Cargando…

Foreign peptide triggers boost in pneumococcal metabolism and growth

BACKGROUND: Nonencapsulated Streptococcus pneumoniae bacteria are successful colonizers of the human nasopharynx and often possess genes aliB-like ORF 1 and 2 in place of capsule genes. AliB-like ORF 2 binds peptide FPPQSV, found in Prevotella species, resulting in enhanced colonization. How this re...

Descripción completa

Detalles Bibliográficos
Autores principales: Nasher, Fauzy, Förster, Sunniva, Yildirim, Efe C., Grandgirard, Denis, Leib, Stephen L., Heller, Manfred, Hathaway, Lucy J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870813/
https://www.ncbi.nlm.nih.gov/pubmed/29580217
http://dx.doi.org/10.1186/s12866-018-1167-y
Descripción
Sumario:BACKGROUND: Nonencapsulated Streptococcus pneumoniae bacteria are successful colonizers of the human nasopharynx and often possess genes aliB-like ORF 1 and 2 in place of capsule genes. AliB-like ORF 2 binds peptide FPPQSV, found in Prevotella species, resulting in enhanced colonization. How this response is mediated is so far unknown. RESULTS: Here we show that the peptide increases expression of genes involved in release of host carbohydrates, carbohydrate uptake and carbohydrate metabolism. In particular, the peptide increased expression of 1,5-anhydro-D-fructose reductase, a metabolic enzyme of an alternative starch and glycogen degrading pathway found in many organisms, in both transcriptomic and proteomic data. The peptide enhanced pneumococcal growth giving a competitive advantage to a strain with aliB-like ORF 2, over its mutant lacking the gene. Possession of aliB-like ORF 2 did not affect release of inflammatory cytokine CXCL8 from epithelial cells in culture and the nonencapsulated wild type strain was not able to establish disease or inflammation in an infant rat model of meningitis. CONCLUSIONS: We propose that AliB-like ORF 2 confers an advantage in colonization by enhancing carbohydrate metabolism resulting in a boost in growth. This may explain the widespread presence of aliB-like ORF 2 in the nonencapsulated pneumococcal population in the human nasopharynx. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12866-018-1167-y) contains supplementary material, which is available to authorized users.