Cargando…
Orthologue chemical space and its influence on target prediction
MOTIVATION: In silico approaches often fail to utilize bioactivity data available for orthologous targets due to insufficient evidence highlighting the benefit for such an approach. Deeper investigation into orthologue chemical space and its influence toward expanding compound and target coverage is...
Autores principales: | Mervin, Lewis H, Bulusu, Krishna C, Kalash, Leen, Afzal, Avid M, Svensson, Fredrik, Firth, Mike A, Barrett, Ian, Engkvist, Ola, Bender, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870859/ https://www.ncbi.nlm.nih.gov/pubmed/28961699 http://dx.doi.org/10.1093/bioinformatics/btx525 |
Ejemplares similares
-
Target prediction utilising negative bioactivity data covering large chemical space
por: Mervin, Lewis H., et al.
Publicado: (2015) -
Probabilistic Random Forest improves bioactivity predictions close to the classification threshold by taking into account experimental uncertainty
por: Mervin, Lewis H., et al.
Publicado: (2021) -
Extending in Silico Protein Target Prediction Models to Include Functional Effects
por: Mervin, Lewis H., et al.
Publicado: (2018) -
Maximizing gain in high-throughput screening using conformal prediction
por: Svensson, Fredrik, et al.
Publicado: (2018) -
Computer-aided design of multi-target ligands at A(1)R, A(2A)R and PDE10A, key proteins in neurodegenerative diseases
por: Kalash, Leen, et al.
Publicado: (2017)