Cargando…
Simultaneous detection of Plasmodium vivax dhfr, dhps, mdr1 and crt-o resistance-associated mutations in the Colombian Amazonian region
BACKGROUND: Malaria continues being a public health problem worldwide. Plasmodium vivax is the species causing the largest number of cases of malaria in Asia and South America. Due to the lack of a completely effective anti-malarial vaccine, controlling this disease has been based on transmission ve...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870912/ https://www.ncbi.nlm.nih.gov/pubmed/29580244 http://dx.doi.org/10.1186/s12936-018-2286-5 |
Sumario: | BACKGROUND: Malaria continues being a public health problem worldwide. Plasmodium vivax is the species causing the largest number of cases of malaria in Asia and South America. Due to the lack of a completely effective anti-malarial vaccine, controlling this disease has been based on transmission vector management, rapid diagnosis and suitable treatment. However, parasite resistance to anti-malarial drugs has become a major yet-to-be-overcome challenge. This study was thus aimed at determining pvmdr1, pvdhfr, pvdhps and pvcrt-o gene mutations and haplotypes from field samples obtained from an endemic area in the Colombian Amazonian region. METHODS: Fifty samples of parasite DNA infected by a single P. vivax strain from symptomatic patients from the Amazonas department in Colombia were analysed by PCR and the pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes were sequenced. Diversity estimators were calculated from the sequences and the haplotypes circulating in the Colombian Amazonian region were obtained. CONCLUSION: pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes in the Colombian Amazonian region are characterized by low genetic diversity. Some resistance-associated mutations were found circulating in this population. New variants are also being reported. A selective sweep signal was located in pvdhfr and pvmdr1 genes, suggesting that these mutations (or some of them) could be providing an adaptive advantage. |
---|