Cargando…
Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits
Understanding the relationship between external stimuli and the spiking activity of cortical populations is a central problem in neuroscience. Dense recurrent connectivity in local cortical circuits can lead to counterintuitive response properties, raising the question of whether there are simple ar...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871018/ https://www.ncbi.nlm.nih.gov/pubmed/29543827 http://dx.doi.org/10.1371/journal.pcbi.1006048 |
_version_ | 1783309586217828352 |
---|---|
author | Ebsch, Christopher Rosenbaum, Robert |
author_facet | Ebsch, Christopher Rosenbaum, Robert |
author_sort | Ebsch, Christopher |
collection | PubMed |
description | Understanding the relationship between external stimuli and the spiking activity of cortical populations is a central problem in neuroscience. Dense recurrent connectivity in local cortical circuits can lead to counterintuitive response properties, raising the question of whether there are simple arithmetical rules for relating circuits’ connectivity structure to their response properties. One such arithmetic is provided by the mean field theory of balanced networks, which is derived in a limit where excitatory and inhibitory synaptic currents precisely balance on average. However, balanced network theory is not applicable to some biologically relevant connectivity structures. We show that cortical circuits with such structure are susceptible to an amplification mechanism arising when excitatory-inhibitory balance is broken at the level of local subpopulations, but maintained at a global level. This amplification, which can be quantified by a linear correction to the classical mean field theory of balanced networks, explains several response properties observed in cortical recordings and provides fundamental insights into the relationship between connectivity structure and neural responses in cortical circuits. |
format | Online Article Text |
id | pubmed-5871018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58710182018-04-06 Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits Ebsch, Christopher Rosenbaum, Robert PLoS Comput Biol Research Article Understanding the relationship between external stimuli and the spiking activity of cortical populations is a central problem in neuroscience. Dense recurrent connectivity in local cortical circuits can lead to counterintuitive response properties, raising the question of whether there are simple arithmetical rules for relating circuits’ connectivity structure to their response properties. One such arithmetic is provided by the mean field theory of balanced networks, which is derived in a limit where excitatory and inhibitory synaptic currents precisely balance on average. However, balanced network theory is not applicable to some biologically relevant connectivity structures. We show that cortical circuits with such structure are susceptible to an amplification mechanism arising when excitatory-inhibitory balance is broken at the level of local subpopulations, but maintained at a global level. This amplification, which can be quantified by a linear correction to the classical mean field theory of balanced networks, explains several response properties observed in cortical recordings and provides fundamental insights into the relationship between connectivity structure and neural responses in cortical circuits. Public Library of Science 2018-03-15 /pmc/articles/PMC5871018/ /pubmed/29543827 http://dx.doi.org/10.1371/journal.pcbi.1006048 Text en © 2018 Ebsch, Rosenbaum http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ebsch, Christopher Rosenbaum, Robert Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits |
title | Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits |
title_full | Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits |
title_fullStr | Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits |
title_full_unstemmed | Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits |
title_short | Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits |
title_sort | imbalanced amplification: a mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871018/ https://www.ncbi.nlm.nih.gov/pubmed/29543827 http://dx.doi.org/10.1371/journal.pcbi.1006048 |
work_keys_str_mv | AT ebschchristopher imbalancedamplificationamechanismofamplificationandsuppressionfromlocalimbalanceofexcitationandinhibitionincorticalcircuits AT rosenbaumrobert imbalancedamplificationamechanismofamplificationandsuppressionfromlocalimbalanceofexcitationandinhibitionincorticalcircuits |