Cargando…
Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood
Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular compo...
Autores principales: | Prauße, Maria T. E., Lehnert, Teresa, Timme, Sandra, Hünniger, Kerstin, Leonhardt, Ines, Kurzai, Oliver, Figge, Marc Thilo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871695/ https://www.ncbi.nlm.nih.gov/pubmed/29619027 http://dx.doi.org/10.3389/fimmu.2018.00560 |
Ejemplares similares
-
Quantitative Simulations Predict Treatment Strategies Against Fungal Infections in Virtual Neutropenic Patients
por: Timme, Sandra, et al.
Publicado: (2018) -
Comparative assessment of immune evasion mechanisms in human whole-blood infection assays by a systems biology approach
por: Lehnert, Teresa, et al.
Publicado: (2021) -
Ex vivo immune profiling in patient blood enables quantification of innate immune effector functions
por: Lehnert, Teresa, et al.
Publicado: (2021) -
Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions
por: Lehnert, Teresa, et al.
Publicado: (2015) -
A Virtual Infection Model Quantifies Innate Effector Mechanisms and Candida albicans Immune Escape in Human Blood
por: Hünniger, Kerstin, et al.
Publicado: (2014)