Cargando…
Preparation of Zr(Mo,W)(2)O(8) with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)(2)(OH,Cl)(2)∙2H(2)O
Solid solutions of Zr(Mo,W)(2)O(7)(OH,Cl)(2)∙2H(2)O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMo(x)W(2−x)O(7)(OH,Cl)(2)∙2H(2)O (x = 0.0, 0....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871766/ https://www.ncbi.nlm.nih.gov/pubmed/29593240 http://dx.doi.org/10.1038/s41598-018-23529-6 |
_version_ | 1783309692523511808 |
---|---|
author | Petrushina, Mariya Yu. Dedova, Elena S. Filatov, Eugeny Yu. Plyusnin, Pavel E. Korenev, Sergei V. Kulkov, Sergei N. Derevyannikova, Elizaveta A. Sharafutdinov, Marat R. Gubanov, Alexander I. |
author_facet | Petrushina, Mariya Yu. Dedova, Elena S. Filatov, Eugeny Yu. Plyusnin, Pavel E. Korenev, Sergei V. Kulkov, Sergei N. Derevyannikova, Elizaveta A. Sharafutdinov, Marat R. Gubanov, Alexander I. |
author_sort | Petrushina, Mariya Yu. |
collection | PubMed |
description | Solid solutions of Zr(Mo,W)(2)O(7)(OH,Cl)(2)∙2H(2)O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMo(x)W(2−x)O(7)(OH,Cl)(2)∙2H(2)O (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0), TGA and in situ powder X-ray diffraction (PXRD) studies (300–1100 K) were conducted. For each case, the boundaries of the transformations were determined: Zr(Mo,W)(2)O(7)(OH,Cl)(2)∙2H(2)O → orthorhombic-ZrMo(x)W(2−x)O(8) (425–525 K), orthorhombic-ZrMo(x)W(2−x)O(8) → cubic-ZrMo(x)W(2−x)O(8) (700–850 K), cubic-ZrMo(x)W(2−x)O(8) → trigonal-ZrMo(x)W(2−x)O(8) (800–1050 K for x > 1) and cubic-ZrMo(x)W(2−x)O(8) → oxides (1000–1075 K for x ≤ 1). The cell parameters of the disordered cubic-ZrMo(x)W(2−x)O(8) (space group Pa-3) were measured within 300–900 K, and the thermal expansion coefficients were calculated: −3.5∙10(−6) – −4.5∙10(−6) K(−1). For the ordered ZrMo(1.8)W(0.2)O(8) (space group P2(1)3), a negative thermal expansion (NTE) coefficient −9.6∙10(−6) K(−1) (300-400 K) was calculated. Orthorhombic-ZrW2O(8) is formed upon the decomposition of ZrW(2)O(7)(OH,Cl)(2)∙2H(2)O within 500–800 K. |
format | Online Article Text |
id | pubmed-5871766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-58717662018-04-02 Preparation of Zr(Mo,W)(2)O(8) with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)(2)(OH,Cl)(2)∙2H(2)O Petrushina, Mariya Yu. Dedova, Elena S. Filatov, Eugeny Yu. Plyusnin, Pavel E. Korenev, Sergei V. Kulkov, Sergei N. Derevyannikova, Elizaveta A. Sharafutdinov, Marat R. Gubanov, Alexander I. Sci Rep Article Solid solutions of Zr(Mo,W)(2)O(7)(OH,Cl)(2)∙2H(2)O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMo(x)W(2−x)O(7)(OH,Cl)(2)∙2H(2)O (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0), TGA and in situ powder X-ray diffraction (PXRD) studies (300–1100 K) were conducted. For each case, the boundaries of the transformations were determined: Zr(Mo,W)(2)O(7)(OH,Cl)(2)∙2H(2)O → orthorhombic-ZrMo(x)W(2−x)O(8) (425–525 K), orthorhombic-ZrMo(x)W(2−x)O(8) → cubic-ZrMo(x)W(2−x)O(8) (700–850 K), cubic-ZrMo(x)W(2−x)O(8) → trigonal-ZrMo(x)W(2−x)O(8) (800–1050 K for x > 1) and cubic-ZrMo(x)W(2−x)O(8) → oxides (1000–1075 K for x ≤ 1). The cell parameters of the disordered cubic-ZrMo(x)W(2−x)O(8) (space group Pa-3) were measured within 300–900 K, and the thermal expansion coefficients were calculated: −3.5∙10(−6) – −4.5∙10(−6) K(−1). For the ordered ZrMo(1.8)W(0.2)O(8) (space group P2(1)3), a negative thermal expansion (NTE) coefficient −9.6∙10(−6) K(−1) (300-400 K) was calculated. Orthorhombic-ZrW2O(8) is formed upon the decomposition of ZrW(2)O(7)(OH,Cl)(2)∙2H(2)O within 500–800 K. Nature Publishing Group UK 2018-03-28 /pmc/articles/PMC5871766/ /pubmed/29593240 http://dx.doi.org/10.1038/s41598-018-23529-6 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Petrushina, Mariya Yu. Dedova, Elena S. Filatov, Eugeny Yu. Plyusnin, Pavel E. Korenev, Sergei V. Kulkov, Sergei N. Derevyannikova, Elizaveta A. Sharafutdinov, Marat R. Gubanov, Alexander I. Preparation of Zr(Mo,W)(2)O(8) with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)(2)(OH,Cl)(2)∙2H(2)O |
title | Preparation of Zr(Mo,W)(2)O(8) with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)(2)(OH,Cl)(2)∙2H(2)O |
title_full | Preparation of Zr(Mo,W)(2)O(8) with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)(2)(OH,Cl)(2)∙2H(2)O |
title_fullStr | Preparation of Zr(Mo,W)(2)O(8) with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)(2)(OH,Cl)(2)∙2H(2)O |
title_full_unstemmed | Preparation of Zr(Mo,W)(2)O(8) with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)(2)(OH,Cl)(2)∙2H(2)O |
title_short | Preparation of Zr(Mo,W)(2)O(8) with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)(2)(OH,Cl)(2)∙2H(2)O |
title_sort | preparation of zr(mo,w)(2)o(8) with a larger negative thermal expansion by controlling the thermal decomposition of zr(mo,w)(2)(oh,cl)(2)∙2h(2)o |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871766/ https://www.ncbi.nlm.nih.gov/pubmed/29593240 http://dx.doi.org/10.1038/s41598-018-23529-6 |
work_keys_str_mv | AT petrushinamariyayu preparationofzrmow2o8withalargernegativethermalexpansionbycontrollingthethermaldecompositionofzrmow2ohcl22h2o AT dedovaelenas preparationofzrmow2o8withalargernegativethermalexpansionbycontrollingthethermaldecompositionofzrmow2ohcl22h2o AT filatoveugenyyu preparationofzrmow2o8withalargernegativethermalexpansionbycontrollingthethermaldecompositionofzrmow2ohcl22h2o AT plyusninpavele preparationofzrmow2o8withalargernegativethermalexpansionbycontrollingthethermaldecompositionofzrmow2ohcl22h2o AT korenevsergeiv preparationofzrmow2o8withalargernegativethermalexpansionbycontrollingthethermaldecompositionofzrmow2ohcl22h2o AT kulkovsergein preparationofzrmow2o8withalargernegativethermalexpansionbycontrollingthethermaldecompositionofzrmow2ohcl22h2o AT derevyannikovaelizavetaa preparationofzrmow2o8withalargernegativethermalexpansionbycontrollingthethermaldecompositionofzrmow2ohcl22h2o AT sharafutdinovmaratr preparationofzrmow2o8withalargernegativethermalexpansionbycontrollingthethermaldecompositionofzrmow2ohcl22h2o AT gubanovalexanderi preparationofzrmow2o8withalargernegativethermalexpansionbycontrollingthethermaldecompositionofzrmow2ohcl22h2o |