Cargando…

Profiles of miRNA Isoforms and tRNA Fragments in Prostate Cancer

MicroRNA (miRNA) isoforms (“isomiRs”) and tRNA-derived fragments (“tRFs”) are powerful regulatory non-coding RNAs (ncRNAs). In human tissues, both types of molecules are abundant, with expression patterns that depend on a person’s race, sex and population origin. Here, we present our analyses of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Magee, Rogan G., Telonis, Aristeidis G., Loher, Phillipe, Londin, Eric, Rigoutsos, Isidore
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871839/
https://www.ncbi.nlm.nih.gov/pubmed/29593348
http://dx.doi.org/10.1038/s41598-018-22488-2
Descripción
Sumario:MicroRNA (miRNA) isoforms (“isomiRs”) and tRNA-derived fragments (“tRFs”) are powerful regulatory non-coding RNAs (ncRNAs). In human tissues, both types of molecules are abundant, with expression patterns that depend on a person’s race, sex and population origin. Here, we present our analyses of the Prostate Cancer (PRAD) datasets of The Cancer Genome Atlas (TCGA) from the standpoint of isomiRs and tRFs. This study represents the first simultaneous examination of isomiRs and tRFs in a large cohort of PRAD patients. We find that isomiRs and tRFs have extensive correlations with messenger RNAs (mRNAs). These correlations are disrupted in PRAD, which suggests disruptions of the regulatory network in the disease state. Notably, we find that the profiles of isomiRs and tRFs differ in patients belonging to different races. We hope that the presented findings can lay the groundwork for future research efforts aimed at elucidating the functional roles of the numerous and distinct members of these two categories of ncRNAs that are present in PRAD.