Cargando…
Network-based machine learning and graph theory algorithms for precision oncology
Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can b...
Autores principales: | Zhang, Wei, Chien, Jeremy, Yong, Jeongsik, Kuang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871915/ https://www.ncbi.nlm.nih.gov/pubmed/29872707 http://dx.doi.org/10.1038/s41698-017-0029-7 |
Ejemplares similares
-
Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion
por: Li, Zhuliu, et al.
Publicado: (2021) -
A robust and stable gene selection algorithm based on graph theory and machine learning
por: Saha, Subrata, et al.
Publicado: (2021) -
Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory
por: Huang, Chien-Hung, et al.
Publicado: (2016) -
Algorithmic graph theory and perfect graphs
por: Golumbic, Martin Charles
Publicado: (2004) -
Algorithmic graph theory
por: Gibbons, Alan M.
Publicado: (1985)