Cargando…
The Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning Scoring Functions for Binding Affinity Prediction
It has recently been claimed that the outstanding performance of machine-learning scoring functions (SFs) is exclusively due to the presence of training complexes with highly similar proteins to those in the test set. Here, we revisit this question using 24 similarity-based training sets, a widely u...
Autores principales: | Li, Hongjian, Peng, Jiangjun, Leung, Yee, Leung, Kwong-Sak, Wong, Man-Hon, Lu, Gang, Ballester, Pedro J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5871981/ https://www.ncbi.nlm.nih.gov/pubmed/29538331 http://dx.doi.org/10.3390/biom8010012 |
Ejemplares similares
-
Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
por: Li, Hongjian, et al.
Publicado: (2014) -
Correcting the impact of docking pose generation error on binding affinity prediction
por: Li, Hongjian, et al.
Publicado: (2016) -
Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest
por: Li, Hongjian, et al.
Publicado: (2015) -
istar: A Web Platform for Large-Scale Protein-Ligand Docking
por: Li, Hongjian, et al.
Publicado: (2014) -
Machine-learning scoring functions trained on complexes dissimilar to the test set already outperform classical counterparts on a blind benchmark
por: Li, Hongjian, et al.
Publicado: (2021)