Cargando…
Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data
BACKGROUND: The integration of gene expression profiles (GEPs) and large-scale biological networks derived from pathways databases is a subject which is being widely explored. Existing methods are based on network distance measures among significantly measured species. Only a small number of them in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872385/ https://www.ncbi.nlm.nih.gov/pubmed/29589566 http://dx.doi.org/10.1186/s12918-018-0551-4 |
_version_ | 1783309824931397632 |
---|---|
author | Miannay, Bertrand Minvielle, Stéphane Magrangeas, Florence Guziolowski, Carito |
author_facet | Miannay, Bertrand Minvielle, Stéphane Magrangeas, Florence Guziolowski, Carito |
author_sort | Miannay, Bertrand |
collection | PubMed |
description | BACKGROUND: The integration of gene expression profiles (GEPs) and large-scale biological networks derived from pathways databases is a subject which is being widely explored. Existing methods are based on network distance measures among significantly measured species. Only a small number of them include the directionality and underlying logic existing in biological networks. In this study we approach the GEP-networks integration problem by considering the network logic, however our approach does not require a prior species selection according to their gene expression level. RESULTS: We start by modeling the biological network representing its underlying logic using Logic Programming. This model points to reachable network discrete states that maximize a notion of harmony between the molecular species active or inactive possible states and the directionality of the pathways reactions according to their activator or inhibitor control role. Only then, we confront these network states with the GEP. From this confrontation independent graph components are derived, each of them related to a fixed and optimal assignment of active or inactive states. These components allow us to decompose a large-scale network into subgraphs and their molecular species state assignments have different degrees of similarity when compared to the same GEP. We apply our method to study the set of possible states derived from a subgraph from the NCI-PID Pathway Interaction Database. This graph links Multiple Myeloma (MM) genes to known receptors for this blood cancer. CONCLUSION: We discover that the NCI-PID MM graph had 15 independent components, and when confronted to 611 MM GEPs, we find 1 component as being more specific to represent the difference between cancer and healthy profiles. |
format | Online Article Text |
id | pubmed-5872385 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-58723852018-04-02 Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data Miannay, Bertrand Minvielle, Stéphane Magrangeas, Florence Guziolowski, Carito BMC Syst Biol Research BACKGROUND: The integration of gene expression profiles (GEPs) and large-scale biological networks derived from pathways databases is a subject which is being widely explored. Existing methods are based on network distance measures among significantly measured species. Only a small number of them include the directionality and underlying logic existing in biological networks. In this study we approach the GEP-networks integration problem by considering the network logic, however our approach does not require a prior species selection according to their gene expression level. RESULTS: We start by modeling the biological network representing its underlying logic using Logic Programming. This model points to reachable network discrete states that maximize a notion of harmony between the molecular species active or inactive possible states and the directionality of the pathways reactions according to their activator or inhibitor control role. Only then, we confront these network states with the GEP. From this confrontation independent graph components are derived, each of them related to a fixed and optimal assignment of active or inactive states. These components allow us to decompose a large-scale network into subgraphs and their molecular species state assignments have different degrees of similarity when compared to the same GEP. We apply our method to study the set of possible states derived from a subgraph from the NCI-PID Pathway Interaction Database. This graph links Multiple Myeloma (MM) genes to known receptors for this blood cancer. CONCLUSION: We discover that the NCI-PID MM graph had 15 independent components, and when confronted to 611 MM GEPs, we find 1 component as being more specific to represent the difference between cancer and healthy profiles. BioMed Central 2018-03-21 /pmc/articles/PMC5872385/ /pubmed/29589566 http://dx.doi.org/10.1186/s12918-018-0551-4 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Miannay, Bertrand Minvielle, Stéphane Magrangeas, Florence Guziolowski, Carito Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data |
title | Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data |
title_full | Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data |
title_fullStr | Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data |
title_full_unstemmed | Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data |
title_short | Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data |
title_sort | constraints on signaling network logic reveal functional subgraphs on multiple myeloma omic data |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872385/ https://www.ncbi.nlm.nih.gov/pubmed/29589566 http://dx.doi.org/10.1186/s12918-018-0551-4 |
work_keys_str_mv | AT miannaybertrand constraintsonsignalingnetworklogicrevealfunctionalsubgraphsonmultiplemyelomaomicdata AT minviellestephane constraintsonsignalingnetworklogicrevealfunctionalsubgraphsonmultiplemyelomaomicdata AT magrangeasflorence constraintsonsignalingnetworklogicrevealfunctionalsubgraphsonmultiplemyelomaomicdata AT guziolowskicarito constraintsonsignalingnetworklogicrevealfunctionalsubgraphsonmultiplemyelomaomicdata |