Cargando…
Investigation of model stacking for drug sensitivity prediction
BACKGROUND: A significant problem in precision medicine is the prediction of drug sensitivity for individual cancer cell lines. Predictive models such as Random Forests have shown promising performance while predicting from individual genomic features such as gene expressions. However, accessibility...
Autores principales: | Matlock, Kevin, De Niz, Carlos, Rahman, Raziur, Ghosh, Souparno, Pal, Ranadip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872495/ https://www.ncbi.nlm.nih.gov/pubmed/29589559 http://dx.doi.org/10.1186/s12859-018-2060-2 |
Ejemplares similares
-
Heterogeneity Aware Random Forest for Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2017) -
Application of transfer learning for cancer drug sensitivity prediction
por: Dhruba, Saugato Rahman, et al.
Publicado: (2018) -
Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2016) -
A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction
por: Haider, Saad, et al.
Publicado: (2015) -
Functional random forest with applications in dose-response predictions
por: Rahman, Raziur, et al.
Publicado: (2019)