Cargando…
Contrasted patterns of evolution of the LINE-1 retrotransposon in perissodactyls: the history of a LINE-1 extinction
BACKGROUND: LINE-1 (L1) is the dominant autonomously replicating non-LTR retrotransposon in mammals. Although our knowledge of L1 evolution across the tree of life has considerably improved in recent years, what we know of L1 evolution in mammals is biased and comes mostly from studies in primates (...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872511/ https://www.ncbi.nlm.nih.gov/pubmed/29610583 http://dx.doi.org/10.1186/s13100-018-0117-4 |
Sumario: | BACKGROUND: LINE-1 (L1) is the dominant autonomously replicating non-LTR retrotransposon in mammals. Although our knowledge of L1 evolution across the tree of life has considerably improved in recent years, what we know of L1 evolution in mammals is biased and comes mostly from studies in primates (mostly human) and rodents (mostly mouse). It is unclear if patterns of evolution that are shared between those two groups apply to other mammalian orders. Here we performed a detailed study on the evolution of L1 in perissodactyls by making use of the complete genome of the domestic horse and of the white rhinoceros. This mammalian order offers an excellent model to study the extinction of L1 since the rhinoceros is one of the few mammalian species to have lost active L1. RESULTS: We found that multiple L1 lineages, carrying different 5’UTRs, have been simultaneously active during the evolution of perissodactyls. We also found that L1 has continuously amplified and diversified in horse. In rhinoceros, L1 was very prolific early on. Two successful families were simultaneously active until ~20my ago but became extinct suddenly at exactly the same time. CONCLUSIONS: The general pattern of L1 evolution in perissodactyls is very similar to what was previously described in mouse and human, suggesting some commonalities in the way mammalian genomes interact with L1. We confirmed the extinction of L1 in rhinoceros and we discuss several possible mechanisms. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13100-018-0117-4) contains supplementary material, which is available to authorized users. |
---|