Cargando…

Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na(+)/K(+)-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes

Background: Beneficial effects of Resveratrol (RSV) have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the res...

Descripción completa

Detalles Bibliográficos
Autores principales: Klinger, Stefanie, Breves, Gerhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872720/
https://www.ncbi.nlm.nih.gov/pubmed/29510506
http://dx.doi.org/10.3390/nu10030302
_version_ 1783309898875928576
author Klinger, Stefanie
Breves, Gerhard
author_facet Klinger, Stefanie
Breves, Gerhard
author_sort Klinger, Stefanie
collection PubMed
description Background: Beneficial effects of Resveratrol (RSV) have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min) in Ussing chambers (functional studies) and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs)). Results: RSV reduced alanine and glucose-induced short circuit currents (ΔI(sc)) and influenced forskolin-induced ΔI(sc). The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1), AMP-activated protein kinase (AMPK), protein kinase A substrates (PKA-S) and liver kinase B1 (LKB1) increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1) and (phosphorylated) Na(+)/H(+)-exchanger 3 (NHE3) did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP) levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures.
format Online
Article
Text
id pubmed-5872720
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-58727202018-03-30 Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na(+)/K(+)-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes Klinger, Stefanie Breves, Gerhard Nutrients Article Background: Beneficial effects of Resveratrol (RSV) have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min) in Ussing chambers (functional studies) and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs)). Results: RSV reduced alanine and glucose-induced short circuit currents (ΔI(sc)) and influenced forskolin-induced ΔI(sc). The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1), AMP-activated protein kinase (AMPK), protein kinase A substrates (PKA-S) and liver kinase B1 (LKB1) increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1) and (phosphorylated) Na(+)/H(+)-exchanger 3 (NHE3) did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP) levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures. MDPI 2018-03-03 /pmc/articles/PMC5872720/ /pubmed/29510506 http://dx.doi.org/10.3390/nu10030302 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Klinger, Stefanie
Breves, Gerhard
Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na(+)/K(+)-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes
title Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na(+)/K(+)-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes
title_full Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na(+)/K(+)-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes
title_fullStr Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na(+)/K(+)-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes
title_full_unstemmed Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na(+)/K(+)-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes
title_short Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na(+)/K(+)-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes
title_sort resveratrol inhibits porcine intestinal glucose and alanine transport: potential roles of na(+)/k(+)-atpase activity, protein kinase a, amp-activated protein kinase and the association of selected nutrient transport proteins with detergent resistant membranes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872720/
https://www.ncbi.nlm.nih.gov/pubmed/29510506
http://dx.doi.org/10.3390/nu10030302
work_keys_str_mv AT klingerstefanie resveratrolinhibitsporcineintestinalglucoseandalaninetransportpotentialrolesofnakatpaseactivityproteinkinaseaampactivatedproteinkinaseandtheassociationofselectednutrienttransportproteinswithdetergentresistantmembranes
AT brevesgerhard resveratrolinhibitsporcineintestinalglucoseandalaninetransportpotentialrolesofnakatpaseactivityproteinkinaseaampactivatedproteinkinaseandtheassociationofselectednutrienttransportproteinswithdetergentresistantmembranes