Cargando…
Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO
In this study, the performance and stability of inverted bulk heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by doping zinc oxide (ZnO) with 0–6 wt % cetyltrimethylammonium bromide (CTAB) in the sol-gel ZnO precursor solution. The power conversion efficiency (PCE) of the optimized 3 wt...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872957/ https://www.ncbi.nlm.nih.gov/pubmed/29510537 http://dx.doi.org/10.3390/ma11030378 |
_version_ | 1783309946083868672 |
---|---|
author | Wu, Chung-Kai Sivashanmugan, Kundan Guo, Tzung-Fang Wen, Ten-Chin |
author_facet | Wu, Chung-Kai Sivashanmugan, Kundan Guo, Tzung-Fang Wen, Ten-Chin |
author_sort | Wu, Chung-Kai |
collection | PubMed |
description | In this study, the performance and stability of inverted bulk heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by doping zinc oxide (ZnO) with 0–6 wt % cetyltrimethylammonium bromide (CTAB) in the sol-gel ZnO precursor solution. The power conversion efficiency (PCE) of the optimized 3 wt % CTAB-doped ZnO PSCs was increased by 9.07%, compared to a PCE of 7.31% for the pristine ZnO device. The 0–6 wt % CTAB-doped ZnO surface roughness was reduced from 2.6 to 1 nm and the number of surface defects decreased. The X-ray photoelectron spectroscopy binding energies of Zn 2p(3/2) (1021.92 eV) and 2p(1/2) (1044.99 eV) shifted to 1022.83 and 1045.88 eV, respectively, which is related to strong chemical bonding via bromide ions (Br(−)) that occupy oxygen vacancies in the ZnO lattice, improving the PCE of PSCs. The concentration of CTAB in ZnO significantly affected the work function of PSC devices; however, excessive CTAB increased the work function of the ZnO layer, resulting from the aggregation of CTAB molecules. In addition, after a 120-hour stability test in the atmosphere with 40% relative humidity, the inverted device based on CTAB-doped ZnO retained 92% of its original PCE and that based on pristine ZnO retained 68% of its original PCE. The obtained results demonstrate that the addition of CTAB into ZnO can dramatically influence the optical, electrical, and morphological properties of ZnO, enhancing the performance and stability of BHJ PSCs. |
format | Online Article Text |
id | pubmed-5872957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-58729572018-03-30 Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO Wu, Chung-Kai Sivashanmugan, Kundan Guo, Tzung-Fang Wen, Ten-Chin Materials (Basel) Article In this study, the performance and stability of inverted bulk heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by doping zinc oxide (ZnO) with 0–6 wt % cetyltrimethylammonium bromide (CTAB) in the sol-gel ZnO precursor solution. The power conversion efficiency (PCE) of the optimized 3 wt % CTAB-doped ZnO PSCs was increased by 9.07%, compared to a PCE of 7.31% for the pristine ZnO device. The 0–6 wt % CTAB-doped ZnO surface roughness was reduced from 2.6 to 1 nm and the number of surface defects decreased. The X-ray photoelectron spectroscopy binding energies of Zn 2p(3/2) (1021.92 eV) and 2p(1/2) (1044.99 eV) shifted to 1022.83 and 1045.88 eV, respectively, which is related to strong chemical bonding via bromide ions (Br(−)) that occupy oxygen vacancies in the ZnO lattice, improving the PCE of PSCs. The concentration of CTAB in ZnO significantly affected the work function of PSC devices; however, excessive CTAB increased the work function of the ZnO layer, resulting from the aggregation of CTAB molecules. In addition, after a 120-hour stability test in the atmosphere with 40% relative humidity, the inverted device based on CTAB-doped ZnO retained 92% of its original PCE and that based on pristine ZnO retained 68% of its original PCE. The obtained results demonstrate that the addition of CTAB into ZnO can dramatically influence the optical, electrical, and morphological properties of ZnO, enhancing the performance and stability of BHJ PSCs. MDPI 2018-03-04 /pmc/articles/PMC5872957/ /pubmed/29510537 http://dx.doi.org/10.3390/ma11030378 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Chung-Kai Sivashanmugan, Kundan Guo, Tzung-Fang Wen, Ten-Chin Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO |
title | Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO |
title_full | Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO |
title_fullStr | Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO |
title_full_unstemmed | Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO |
title_short | Enhancement of Inverted Polymer Solar Cells Performances Using Cetyltrimethylammonium-Bromide Modified ZnO |
title_sort | enhancement of inverted polymer solar cells performances using cetyltrimethylammonium-bromide modified zno |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872957/ https://www.ncbi.nlm.nih.gov/pubmed/29510537 http://dx.doi.org/10.3390/ma11030378 |
work_keys_str_mv | AT wuchungkai enhancementofinvertedpolymersolarcellsperformancesusingcetyltrimethylammoniumbromidemodifiedzno AT sivashanmugankundan enhancementofinvertedpolymersolarcellsperformancesusingcetyltrimethylammoniumbromidemodifiedzno AT guotzungfang enhancementofinvertedpolymersolarcellsperformancesusingcetyltrimethylammoniumbromidemodifiedzno AT wentenchin enhancementofinvertedpolymersolarcellsperformancesusingcetyltrimethylammoniumbromidemodifiedzno |