Cargando…

Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility

Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identif...

Descripción completa

Detalles Bibliográficos
Autores principales: de Souza, Wagner R., Martins, Polyana K., Freeman, Jackie, Pellny, Till K., Michaelson, Louise V., Sampaio, Bruno L., Vinecky, Felipe, Ribeiro, Ana P., da Cunha, Barbara A. D. B., Kobayashi, Adilson K., de Oliveira, Patricia A., Campanha, Raquel B., Pacheco, Thályta F., Martarello, Danielly C. I., Marchiosi, Rogério, Ferrarese‐Filho, Osvaldo, dos Santos, Wanderley D., Tramontina, Robson, Squina, Fabio M., Centeno, Danilo C., Gaspar, Marília, Braga, Marcia R., Tiné, Marco A. S., Ralph, John, Mitchell, Rowan A. C., Molinari, Hugo B. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5873385/
https://www.ncbi.nlm.nih.gov/pubmed/29315591
http://dx.doi.org/10.1111/nph.14970
_version_ 1783310026578853888
author de Souza, Wagner R.
Martins, Polyana K.
Freeman, Jackie
Pellny, Till K.
Michaelson, Louise V.
Sampaio, Bruno L.
Vinecky, Felipe
Ribeiro, Ana P.
da Cunha, Barbara A. D. B.
Kobayashi, Adilson K.
de Oliveira, Patricia A.
Campanha, Raquel B.
Pacheco, Thályta F.
Martarello, Danielly C. I.
Marchiosi, Rogério
Ferrarese‐Filho, Osvaldo
dos Santos, Wanderley D.
Tramontina, Robson
Squina, Fabio M.
Centeno, Danilo C.
Gaspar, Marília
Braga, Marcia R.
Tiné, Marco A. S.
Ralph, John
Mitchell, Rowan A. C.
Molinari, Hugo B. C.
author_facet de Souza, Wagner R.
Martins, Polyana K.
Freeman, Jackie
Pellny, Till K.
Michaelson, Louise V.
Sampaio, Bruno L.
Vinecky, Felipe
Ribeiro, Ana P.
da Cunha, Barbara A. D. B.
Kobayashi, Adilson K.
de Oliveira, Patricia A.
Campanha, Raquel B.
Pacheco, Thályta F.
Martarello, Danielly C. I.
Marchiosi, Rogério
Ferrarese‐Filho, Osvaldo
dos Santos, Wanderley D.
Tramontina, Robson
Squina, Fabio M.
Centeno, Danilo C.
Gaspar, Marília
Braga, Marcia R.
Tiné, Marco A. S.
Ralph, John
Mitchell, Rowan A. C.
Molinari, Hugo B. C.
author_sort de Souza, Wagner R.
collection PubMed
description Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl‐CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX feruloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p‐coumarate, changes in two‐dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40–60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.
format Online
Article
Text
id pubmed-5873385
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-58733852018-03-31 Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility de Souza, Wagner R. Martins, Polyana K. Freeman, Jackie Pellny, Till K. Michaelson, Louise V. Sampaio, Bruno L. Vinecky, Felipe Ribeiro, Ana P. da Cunha, Barbara A. D. B. Kobayashi, Adilson K. de Oliveira, Patricia A. Campanha, Raquel B. Pacheco, Thályta F. Martarello, Danielly C. I. Marchiosi, Rogério Ferrarese‐Filho, Osvaldo dos Santos, Wanderley D. Tramontina, Robson Squina, Fabio M. Centeno, Danilo C. Gaspar, Marília Braga, Marcia R. Tiné, Marco A. S. Ralph, John Mitchell, Rowan A. C. Molinari, Hugo B. C. New Phytol Research Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl‐CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX feruloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p‐coumarate, changes in two‐dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40–60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications. John Wiley and Sons Inc. 2018-01-08 2018-04 /pmc/articles/PMC5873385/ /pubmed/29315591 http://dx.doi.org/10.1111/nph.14970 Text en © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
de Souza, Wagner R.
Martins, Polyana K.
Freeman, Jackie
Pellny, Till K.
Michaelson, Louise V.
Sampaio, Bruno L.
Vinecky, Felipe
Ribeiro, Ana P.
da Cunha, Barbara A. D. B.
Kobayashi, Adilson K.
de Oliveira, Patricia A.
Campanha, Raquel B.
Pacheco, Thályta F.
Martarello, Danielly C. I.
Marchiosi, Rogério
Ferrarese‐Filho, Osvaldo
dos Santos, Wanderley D.
Tramontina, Robson
Squina, Fabio M.
Centeno, Danilo C.
Gaspar, Marília
Braga, Marcia R.
Tiné, Marco A. S.
Ralph, John
Mitchell, Rowan A. C.
Molinari, Hugo B. C.
Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility
title Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility
title_full Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility
title_fullStr Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility
title_full_unstemmed Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility
title_short Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility
title_sort suppression of a single bahd gene in setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5873385/
https://www.ncbi.nlm.nih.gov/pubmed/29315591
http://dx.doi.org/10.1111/nph.14970
work_keys_str_mv AT desouzawagnerr suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT martinspolyanak suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT freemanjackie suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT pellnytillk suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT michaelsonlouisev suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT sampaiobrunol suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT vineckyfelipe suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT ribeiroanap suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT dacunhabarbaraadb suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT kobayashiadilsonk suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT deoliveirapatriciaa suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT campanharaquelb suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT pachecothalytaf suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT martarellodaniellyci suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT marchiosirogerio suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT ferraresefilhoosvaldo suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT dossantoswanderleyd suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT tramontinarobson suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT squinafabiom suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT centenodaniloc suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT gasparmarilia suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT bragamarciar suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT tinemarcoas suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT ralphjohn suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT mitchellrowanac suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility
AT molinarihugobc suppressionofasinglebahdgeneinsetariaviridiscauseslargestabledecreasesincellwallferuloylationandincreasesbiomassdigestibility