Cargando…
A comparison of group prediction approaches in longitudinal discriminant analysis
Longitudinal discriminant analysis (LoDA) can be used to classify patients into prognostic groups based on their clinical history, which often involves longitudinal measurements of various clinically relevant markers. Patients' longitudinal data is first modelled using multivariate generalised...
Autores principales: | Hughes, David M., El Saeiti, Riham, García‐Fiñana, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5873537/ https://www.ncbi.nlm.nih.gov/pubmed/28833412 http://dx.doi.org/10.1002/bimj.201700013 |
Ejemplares similares
-
Decision‐theoretic designs for a series of trials with correlated treatment effects using the Sarmanov multivariate beta‐binomial distribution
por: Hee, Siew Wan, et al.
Publicado: (2017) -
ISCB Public Policy Statement on Open Access to Scientific and Technical Research Literature
Publicado: (2011) -
Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types
por: Hughes, David M, et al.
Publicado: (2016) -
Dynamic classification using credible intervals in longitudinal discriminant analysis
por: Hughes, David M., et al.
Publicado: (2017) -
A graph neural network approach for molecule carcinogenicity prediction
por: Fradkin, Philip, et al.
Publicado: (2022)