Cargando…
Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species
BACKGROUND: Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple respons...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5873934/ https://www.ncbi.nlm.nih.gov/pubmed/29590108 http://dx.doi.org/10.1371/journal.pone.0192678 |
_version_ | 1783310074092978176 |
---|---|
author | Woldesemayat, Adugna Abdi Modise, David M. Gemeildien, Junaid Ndimba, Bongani K. Christoffels, Alan |
author_facet | Woldesemayat, Adugna Abdi Modise, David M. Gemeildien, Junaid Ndimba, Bongani K. Christoffels, Alan |
author_sort | Woldesemayat, Adugna Abdi |
collection | PubMed |
description | BACKGROUND: Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations. METHODS: In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO), Trait Ontology (TO), Plant Ontology (PO), Growth Ontology (GRO) and Environment Ontology (EO) were used to semantically integrate drought related information. RESULTS: Target genes linked to Quantitative Trait Loci (QTLs) controlling yield and stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%), salt (32%), cold (20%), heat (8%) and oxidative stress (25%) were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs associated with different traits that are responsive to multiple stresses. Ontology mapping was used to validate the identified genes, while reconstruction of the phylogenetic tree was instrumental to infer the evolutionary relationship of the sorghum orthologs. The results also show specific genes responsible for various interrelated components of drought response mechanism such as drought tolerance, drought avoidance and drought escape. CONCLUSIONS: We submit that this approach is novel and to our knowledge, has not been used previously in any other research; it enables us to perform cross-species queries for genes that are likely to be associated with multiple stress tolerance, as a means to identify novel targets for engineering stress resistance in sorghum and possibly, in other crop species. |
format | Online Article Text |
id | pubmed-5873934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58739342018-04-06 Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species Woldesemayat, Adugna Abdi Modise, David M. Gemeildien, Junaid Ndimba, Bongani K. Christoffels, Alan PLoS One Research Article BACKGROUND: Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations. METHODS: In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO), Trait Ontology (TO), Plant Ontology (PO), Growth Ontology (GRO) and Environment Ontology (EO) were used to semantically integrate drought related information. RESULTS: Target genes linked to Quantitative Trait Loci (QTLs) controlling yield and stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%), salt (32%), cold (20%), heat (8%) and oxidative stress (25%) were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs associated with different traits that are responsive to multiple stresses. Ontology mapping was used to validate the identified genes, while reconstruction of the phylogenetic tree was instrumental to infer the evolutionary relationship of the sorghum orthologs. The results also show specific genes responsible for various interrelated components of drought response mechanism such as drought tolerance, drought avoidance and drought escape. CONCLUSIONS: We submit that this approach is novel and to our knowledge, has not been used previously in any other research; it enables us to perform cross-species queries for genes that are likely to be associated with multiple stress tolerance, as a means to identify novel targets for engineering stress resistance in sorghum and possibly, in other crop species. Public Library of Science 2018-03-28 /pmc/articles/PMC5873934/ /pubmed/29590108 http://dx.doi.org/10.1371/journal.pone.0192678 Text en © 2018 Woldesemayat et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Woldesemayat, Adugna Abdi Modise, David M. Gemeildien, Junaid Ndimba, Bongani K. Christoffels, Alan Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species |
title | Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species |
title_full | Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species |
title_fullStr | Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species |
title_full_unstemmed | Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species |
title_short | Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species |
title_sort | cross-species multiple environmental stress responses: an integrated approach to identify candidate genes for multiple stress tolerance in sorghum (sorghum bicolor (l.) moench) and related model species |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5873934/ https://www.ncbi.nlm.nih.gov/pubmed/29590108 http://dx.doi.org/10.1371/journal.pone.0192678 |
work_keys_str_mv | AT woldesemayatadugnaabdi crossspeciesmultipleenvironmentalstressresponsesanintegratedapproachtoidentifycandidategenesformultiplestresstoleranceinsorghumsorghumbicolorlmoenchandrelatedmodelspecies AT modisedavidm crossspeciesmultipleenvironmentalstressresponsesanintegratedapproachtoidentifycandidategenesformultiplestresstoleranceinsorghumsorghumbicolorlmoenchandrelatedmodelspecies AT gemeildienjunaid crossspeciesmultipleenvironmentalstressresponsesanintegratedapproachtoidentifycandidategenesformultiplestresstoleranceinsorghumsorghumbicolorlmoenchandrelatedmodelspecies AT ndimbabonganik crossspeciesmultipleenvironmentalstressresponsesanintegratedapproachtoidentifycandidategenesformultiplestresstoleranceinsorghumsorghumbicolorlmoenchandrelatedmodelspecies AT christoffelsalan crossspeciesmultipleenvironmentalstressresponsesanintegratedapproachtoidentifycandidategenesformultiplestresstoleranceinsorghumsorghumbicolorlmoenchandrelatedmodelspecies |