Cargando…
Fresh red blood cells transfusion protects against aluminum phosphide-induced metabolic acidosis and mortality in rats
BACKGROUND: Aluminum phosphide (AlP) is used as pesticide in some countries for protection of stored grains. Human poisoning with AlP due to suicide attempt or accidental environmental exposure is associated with very high mortality partially due to development of severe metabolic acidosis. Previous...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874013/ https://www.ncbi.nlm.nih.gov/pubmed/29590163 http://dx.doi.org/10.1371/journal.pone.0193991 |
Sumario: | BACKGROUND: Aluminum phosphide (AlP) is used as pesticide in some countries for protection of stored grains. Human poisoning with AlP due to suicide attempt or accidental environmental exposure is associated with very high mortality partially due to development of severe metabolic acidosis. Previous studies have shown that hemoglobin has high buffering capacity and erythrocytes can potentially be used for management of metabolic acidosis. The aim of this study was to evaluate the effect of fresh packed red blood cells (RBC) transfusion on survival and cardiovascular function in AlP-poisoned rats. METHODOLOGY/PRINCIPAL FINDINGS: Rats were poisoned with AlP by gavage. Fresh packed RBC was transfused via tail vein after AlP administration. Acid-base balance, vital signs and mortality was assessed and compared in experimental groups. Infusion of fresh packed RBC (1.5 ml) one hour after AlP (4–15 mg/kg) intoxication was associated with a significant decrease in mortality rate. Packed RBC infusion improved blood pH, HCO(3)(-), Na(+) and Ca(2+) levels. Plasma troponin level was also reduced and ECG changes were reversed following packed RBC infusion in AlP intoxicated rats. CONCLUSIONS: Our results showed that fresh RBC transfusion could ameliorate metabolic acidosis and enhance survival in AlP-poisoned rat. We assume that an increase in pool of RBCs may modulate acid-base balance or potentially chelate AlP-related toxic intermediates via phosphine-hemoglobin interaction. |
---|