Cargando…

Automated C. elegans embryo alignments reveal brain neuropil position invariance despite lax cell body placement

The Caenorhabditis elegans cell lineage is nearly invariant. Whether this stereotyped cell-division pattern promotes reproducibility in cell shapes/positions is not generally known, as manual spatiotemporal cell-shape/position alignments are labor-intensive, and fully-automated methods are not descr...

Descripción completa

Detalles Bibliográficos
Autores principales: Insley, Peter, Shaham, Shai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874040/
https://www.ncbi.nlm.nih.gov/pubmed/29590193
http://dx.doi.org/10.1371/journal.pone.0194861
Descripción
Sumario:The Caenorhabditis elegans cell lineage is nearly invariant. Whether this stereotyped cell-division pattern promotes reproducibility in cell shapes/positions is not generally known, as manual spatiotemporal cell-shape/position alignments are labor-intensive, and fully-automated methods are not described. Here, we report automated algorithms for spatiotemporal alignments of C. elegans embryos from pre-morphogenesis to motor-activity initiation. We use sparsely-labeled green-fluorescent nuclei and a pan-nuclear red-fluorescent reporter to register consecutive imaging time points and compare embryos. Using our method, we monitor early assembly of the nerve-ring (NR) brain neuropil. While NR pioneer neurons exhibit reproducible growth kinetics and axon positions, cell-body placements are variable. Thus, pioneer-neuron axon locations, but not cell-body positions, are under selection. We also show that anterior NR displacement in cam-1/ROR Wnt-receptor mutants is not an early NR assembly defect. Our results demonstrate the utility of automated spatiotemporal alignments of C. elegans embryos, and uncover key principles guiding nervous-system development in this animal.