Cargando…
Personalized survival predictions via Trees of Predictors: An application to cardiac transplantation
BACKGROUND: Risk prediction is crucial in many areas of medical practice, such as cardiac transplantation, but existing clinical risk-scoring methods have suboptimal performance. We develop a novel risk prediction algorithm and test its performance on the database of all patients who were registered...
Autores principales: | Yoon, Jinsung, Zame, William R., Banerjee, Amitava, Cadeiras, Martin, Alaa, Ahmed M., van der Schaar, Mihaela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874060/ https://www.ncbi.nlm.nih.gov/pubmed/29590219 http://dx.doi.org/10.1371/journal.pone.0194985 |
Ejemplares similares
-
Prognostication and Risk Factors for Cystic Fibrosis via Automated Machine Learning
por: Alaa, Ahmed M., et al.
Publicado: (2018) -
Matters Arising: PREDICT underestimates survival of patients with HER2-positive early-stage breast cancer
por: Alaa, Ahmed M., et al.
Publicado: (2023) -
Aspirin for primary prevention of ST segment elevation myocardial infarction in persons with diabetes and multiple risk factors
por: Bugiardini, Raffaele, et al.
Publicado: (2020) -
CPAS: the UK’s national machine learning-based hospital capacity planning system for COVID-19
por: Qian, Zhaozhi, et al.
Publicado: (2020) -
External validity of machine learning-based prognostic scores for cystic fibrosis: A retrospective study using the UK and Canadian registries
por: Qin, Yuchao, et al.
Publicado: (2023)