Cargando…
Investigation on using high‐energy proton beam for total body irradiation (TBI)
This work investigated the possibility of using proton beam for total body irradiation (TBI). We hypothesized the broad‐slow‐rising entrance dose from a monoenergetic proton beam can deliver a uniform dose to patient with varied thickness. Comparing to photon‐based TBI, it would not require any pati...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874114/ https://www.ncbi.nlm.nih.gov/pubmed/27685117 http://dx.doi.org/10.1120/jacmp.v17i5.6223 |
Sumario: | This work investigated the possibility of using proton beam for total body irradiation (TBI). We hypothesized the broad‐slow‐rising entrance dose from a monoenergetic proton beam can deliver a uniform dose to patient with varied thickness. Comparing to photon‐based TBI, it would not require any patient‐specific compensator or beam spoiler. The hypothesis was first tested by simulating 250 MeV, 275 MeV, and 300 MeV protons irradiating a wedge‐shaped water phantom in a paired opposing arrangement using Monte Carlo (MC) method. To allow [Formula: see text] dose variation, the maximum water equivalent thickness (WET) of a treatable patient separation was 29 cm for 250 MeV proton, and [Formula: see text] for 275 MeV and 300 MeV proton. The compared 6 MV photon can only treat patients with up to 15.5 cm water‐equivalent separation. In the second step, we simulated the dose deposition from the same beams on a patient's whole‐body CT scan. The maximum patient separation in WET was 23 cm. The calculated whole‐body dose variations were [Formula: see text] , [Formula: see text] , and [Formula: see text] for 250 MeV proton, 275 MeV proton, 300 MeV proton, and 6 MV photon. At last, we tested the current machine capability to deliver a monoenergetic proton beam with a large uniform field. Experiments were performed on a compact double scattering single‐gantry proton system. With its C‐shaped gantry design, the source‐to‐surface distance (SSD) reached 7 m. The measured dose deposition curve had 22 cm relatively flat entrance region. The full width half maximum field size was measured 105 cm. The current scatter filter had to be redesigned to produce a uniform intensity at such treatment distance. In conclusion, this work demonstrated the possibility of using proton beam for TBI. The current commercially available proton machines would soon be ready for such task. PACS number(s): 87.53.Bn, 87.55.K‐, 87.55.‐x, 87.56.‐v |
---|