Cargando…
Patient‐specific 17‐segment myocardial modeling on a bull's‐eye map
The purpose of this study was to develop and validate cardiac computed tomography (CT) quantitative analysis software with a patient‐specific, 17‐segment myocardial model that uses electrocardiogram (ECG)‐gated cardiac CT images to differentiate between normal controls and severe aortic stenosis (AS...
Autores principales: | Jung, Joonho, Kim, Young‐Hak, Kim, Namkug, Yang, Dong Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874123/ https://www.ncbi.nlm.nih.gov/pubmed/27685120 http://dx.doi.org/10.1120/jacmp.v17i5.6237 |
Ejemplares similares
-
Bull’s Head Sign
por: Yamamoto, Koichiro, et al.
Publicado: (2021) -
Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning
por: Koo, Hyun Jung, et al.
Publicado: (2020) -
Myocardial T1 and T2 Mapping: Techniques and Clinical Applications
por: Kim, Pan Ki, et al.
Publicado: (2017) -
Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications
por: Ha, Hojin, et al.
Publicado: (2016) -
Lumbar spine segmentation method based on deep learning
por: Lu, Hongjiang, et al.
Publicado: (2023)