Cargando…

Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review

Epilepsy is a chronic brain syndrome characterized by recurrent seizures resulting from excessive neuronal discharges. Despite the development of various new antiepileptic drugs, many patients are refractory to treatment and report side effects. Non-invasive methods of brain stimulation, such as tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Regner, Gabriela G., Pereira, Patrícia, Leffa, Douglas T., de Oliveira, Carla, Vercelino, Rafael, Fregni, Felipe, Torres, Iraci L. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874505/
https://www.ncbi.nlm.nih.gov/pubmed/29623027
http://dx.doi.org/10.3389/fnins.2018.00189
_version_ 1783310166591012864
author Regner, Gabriela G.
Pereira, Patrícia
Leffa, Douglas T.
de Oliveira, Carla
Vercelino, Rafael
Fregni, Felipe
Torres, Iraci L. S.
author_facet Regner, Gabriela G.
Pereira, Patrícia
Leffa, Douglas T.
de Oliveira, Carla
Vercelino, Rafael
Fregni, Felipe
Torres, Iraci L. S.
author_sort Regner, Gabriela G.
collection PubMed
description Epilepsy is a chronic brain syndrome characterized by recurrent seizures resulting from excessive neuronal discharges. Despite the development of various new antiepileptic drugs, many patients are refractory to treatment and report side effects. Non-invasive methods of brain stimulation, such as transcranial direct current stimulation (tDCS), have been tested as alternative approaches to directly modulate the excitability of epileptogenic neural circuits. Although some pilot and initial clinical studies have shown positive results, there is still uncertainty regarding the next steps of investigation in this field. Therefore, we reviewed preclinical and clinical studies using the following framework: (1) preclinical studies that have been successfully translated to clinical studies, (2) preclinical studies that have failed to be translated to clinical studies, and (3) clinical findings that were not previously tested in preclinical studies. We searched PubMed, Web of Science, Embase, and SciELO (2002–2017) using the keywords “tDCS,” “epilepsy,” “clinical trials,” and “animal models.” Our initial search resulted in 64 articles. After applying inclusion and exclusion criteria, we screened 17 full-text articles to extract findings about the efficacy of tDCS, with respect to the therapeutic framework used and the resulting reduction in seizures and epileptiform patterns. We found that few preclinical findings have been translated into clinical research (number of sessions and effects on seizure frequency) and that most findings have not been tested clinically (effects of tDCS on status epilepticus and absence epilepsy, neuroprotective effects in the hippocampus, and combined use with specific medications). Finally, considering that clinical studies on tDCS have been conducted for several epileptic syndromes, most were not previously tested in preclinical studies (Rasmussen's encephalitis, drug resistant epilepsy, and hippocampal sclerosis-induced epilepsy). Overall, most studies report positive findings. However, it is important to underscore that a successful preclinical study may not indicate success in a clinical study, considering the differences highlighted herein. Although most studies report significant findings, there are still important insights from preclinical work that must be tested clinically. Understanding these factors may improve the evidence for the potential use of this technique as a clinical tool in the treatment of epilepsy.
format Online
Article
Text
id pubmed-5874505
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-58745052018-04-05 Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review Regner, Gabriela G. Pereira, Patrícia Leffa, Douglas T. de Oliveira, Carla Vercelino, Rafael Fregni, Felipe Torres, Iraci L. S. Front Neurosci Neuroscience Epilepsy is a chronic brain syndrome characterized by recurrent seizures resulting from excessive neuronal discharges. Despite the development of various new antiepileptic drugs, many patients are refractory to treatment and report side effects. Non-invasive methods of brain stimulation, such as transcranial direct current stimulation (tDCS), have been tested as alternative approaches to directly modulate the excitability of epileptogenic neural circuits. Although some pilot and initial clinical studies have shown positive results, there is still uncertainty regarding the next steps of investigation in this field. Therefore, we reviewed preclinical and clinical studies using the following framework: (1) preclinical studies that have been successfully translated to clinical studies, (2) preclinical studies that have failed to be translated to clinical studies, and (3) clinical findings that were not previously tested in preclinical studies. We searched PubMed, Web of Science, Embase, and SciELO (2002–2017) using the keywords “tDCS,” “epilepsy,” “clinical trials,” and “animal models.” Our initial search resulted in 64 articles. After applying inclusion and exclusion criteria, we screened 17 full-text articles to extract findings about the efficacy of tDCS, with respect to the therapeutic framework used and the resulting reduction in seizures and epileptiform patterns. We found that few preclinical findings have been translated into clinical research (number of sessions and effects on seizure frequency) and that most findings have not been tested clinically (effects of tDCS on status epilepticus and absence epilepsy, neuroprotective effects in the hippocampus, and combined use with specific medications). Finally, considering that clinical studies on tDCS have been conducted for several epileptic syndromes, most were not previously tested in preclinical studies (Rasmussen's encephalitis, drug resistant epilepsy, and hippocampal sclerosis-induced epilepsy). Overall, most studies report positive findings. However, it is important to underscore that a successful preclinical study may not indicate success in a clinical study, considering the differences highlighted herein. Although most studies report significant findings, there are still important insights from preclinical work that must be tested clinically. Understanding these factors may improve the evidence for the potential use of this technique as a clinical tool in the treatment of epilepsy. Frontiers Media S.A. 2018-03-22 /pmc/articles/PMC5874505/ /pubmed/29623027 http://dx.doi.org/10.3389/fnins.2018.00189 Text en Copyright © 2018 Regner, Pereira, Leffa, de Oliveira, Vercelino, Fregni and Torres. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Regner, Gabriela G.
Pereira, Patrícia
Leffa, Douglas T.
de Oliveira, Carla
Vercelino, Rafael
Fregni, Felipe
Torres, Iraci L. S.
Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review
title Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review
title_full Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review
title_fullStr Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review
title_full_unstemmed Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review
title_short Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review
title_sort preclinical to clinical translation of studies of transcranial direct-current stimulation in the treatment of epilepsy: a systematic review
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874505/
https://www.ncbi.nlm.nih.gov/pubmed/29623027
http://dx.doi.org/10.3389/fnins.2018.00189
work_keys_str_mv AT regnergabrielag preclinicaltoclinicaltranslationofstudiesoftranscranialdirectcurrentstimulationinthetreatmentofepilepsyasystematicreview
AT pereirapatricia preclinicaltoclinicaltranslationofstudiesoftranscranialdirectcurrentstimulationinthetreatmentofepilepsyasystematicreview
AT leffadouglast preclinicaltoclinicaltranslationofstudiesoftranscranialdirectcurrentstimulationinthetreatmentofepilepsyasystematicreview
AT deoliveiracarla preclinicaltoclinicaltranslationofstudiesoftranscranialdirectcurrentstimulationinthetreatmentofepilepsyasystematicreview
AT vercelinorafael preclinicaltoclinicaltranslationofstudiesoftranscranialdirectcurrentstimulationinthetreatmentofepilepsyasystematicreview
AT fregnifelipe preclinicaltoclinicaltranslationofstudiesoftranscranialdirectcurrentstimulationinthetreatmentofepilepsyasystematicreview
AT torresiracils preclinicaltoclinicaltranslationofstudiesoftranscranialdirectcurrentstimulationinthetreatmentofepilepsyasystematicreview