Cargando…

Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment

Since urinary insecticide metabolites are commonly used as biomarkers of exposure, it is important that we quantify whether insecticides degrade in food and beverages in order to better perform risk assessment. This study was designed to quantify degradation of organophosphorus and pyrethroid insect...

Descripción completa

Detalles Bibliográficos
Autores principales: Radford, Samantha A., Panuwet, Parinya, Hunter, Ronald E., Barr, Dana Boyd, Ryan, P. Barry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874784/
https://www.ncbi.nlm.nih.gov/pubmed/29393904
http://dx.doi.org/10.3390/toxics6010011
Descripción
Sumario:Since urinary insecticide metabolites are commonly used as biomarkers of exposure, it is important that we quantify whether insecticides degrade in food and beverages in order to better perform risk assessment. This study was designed to quantify degradation of organophosphorus and pyrethroid insecticides in beverages. Purified water, white grape juice, orange juice, and red wine were fortified with 500 ng/mL diazinon, malathion, chlorpyrifos, permethrin, cyfluthrin, cypermethrin, and deltamethrin, and aliquots were extracted several times over a 15-day storage period at 2.5 °C. Overall, statistically significant loss of at least one insecticide was observed in each matrix, and at least five out of seven insecticides demonstrated a statistically significant loss in all matrices except orange juice. An investigation of an alternative mechanism of insecticide loss—adsorption onto the glass surface of the storage jars—was carried out, which indicated that this mechanism of loss is insignificant. Results of this work suggest that insecticides degrade in these beverages, and this degradation may lead to pre-existing insecticide degradates in the beverages, suggesting that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk.