Cargando…

Pharmacokinetics and Scintigraphic Imaging of the Hypoxia-Imaging Agent [(123)I]IAZA in Healthy Adults Following Exercise-Based Cardiac Stress †

The objective of this work is to evaluate the potential effect of cardiac stress exercise on the accumulation of [(123)I]IAZA, a radiopharmaceutical used to image focal tissue hypoxia, in otherwise normal myocardium in healthy volunteers, and to determine the impact of exercise on [(123)I]IAZA pharm...

Descripción completa

Detalles Bibliográficos
Autores principales: Stypinski, Daria, McQuarrie, Stephen A., McEwan, Alexander J. B., Wiebe, Leonard I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874838/
https://www.ncbi.nlm.nih.gov/pubmed/29470434
http://dx.doi.org/10.3390/pharmaceutics10010025
_version_ 1783310242564538368
author Stypinski, Daria
McQuarrie, Stephen A.
McEwan, Alexander J. B.
Wiebe, Leonard I.
author_facet Stypinski, Daria
McQuarrie, Stephen A.
McEwan, Alexander J. B.
Wiebe, Leonard I.
author_sort Stypinski, Daria
collection PubMed
description The objective of this work is to evaluate the potential effect of cardiac stress exercise on the accumulation of [(123)I]IAZA, a radiopharmaceutical used to image focal tissue hypoxia, in otherwise normal myocardium in healthy volunteers, and to determine the impact of exercise on [(123)I]IAZA pharmacokinetics. The underlying goal is to establish a rational basis and a baseline for studies of focal myocardial hypoxia in cardiac patients using [(123)I]IAZA. Three healthy male volunteers ran the ‘Bruce’ treadmill protocol, a clinically-accepted protocol designed to expose myocardial ischemia in patients. The ‘Bruce’ criterion heart rate is 85% of [220–age]. Approximately one minute before reaching this level, [(123)I]IAZA (5.0 mCi/0.85 mg) was administered as a slow (1–3 min) single intravenous (i.v.) injection via an indwelling venous catheter. The volunteer continued running for an additional 1 min before being transferred to a gamma camera. Serum samples were collected from the arm contralateral to the administration site at pre-determined intervals from 1 min to 45 h post injection and were analyzed by radio HPLC. Pharmacokinetic (PK) parameters were derived for [(123)I]IAZA and total radioactivity (total[(123)I]) using compartmental and noncompartmental analyses. Whole-body planar scintigraphic images were acquired from 0.75 to 24 h after dosing. PK data and scintigraphic images were compared to previously published [(123)I]IAZA data from healthy volunteers rest. Following exercise stress, both [(123)I]IAZA and total[(123)I] exhibited bi-exponential decline profiles, with rapid distribution phases [half-lives (t(1/2α)) of 1.2 and 1.4 min, respectively], followed by slower elimination phases [t(1/2β) of 195 and 290 min, respectively]. Total body clearance (CL(TB)) and the steady state volume of distribution (V(ss)) were 0.647 L/kg and 185 mL/min, respectively, for [(123)I]IAZA and 0.785 L/kg and 135 mL/min, respectively, for total[(123)I]. The t(1/2β), CL(TB) and V(ss) values were comparable to those reported previously for rested volunteers. The t(1/2α) was approximately 4-fold shorter for [(123)I]IAZA and approximately 3-fold shorter for total[(123)I] under exercise relative to rested subjects. The heart region was visualized in early whole body scintigraphic images, but later images showed no accumulated radioactivity in this region, and no differences from images reported for rested volunteers were apparent. Minimal uptake of radiotracer in myocardium and skeletal muscle was consistent with uptake in non-stressed myocardium. Whole-body scintigrams for [(123)I]IAZA in exercise-stressed healthy volunteers were indistinguishable from images of non-exercised volunteers. There was no evidence of hypoxia-dependent binding in exercised but otherwise healthy myocardium, supporting the conclusion that exercise stress at Bruce protocol intensity does not induce measurable myocardial hypoxia. Effects of exercise on PK parameters were minimal; specifically, the t(1/2α) was shortened, reflecting increased cardiac output associated with exercise. It is concluded that because [(123)I]IAZA was not metabolically bound in exercise-stressed myocardium, a stress test will not create elevated myocardial background that would mask regions of myocardial perfusion deficiency. [(123)I]IAZA would therefore be suitable for the detection of viable, hypoxic myocardium in patients undergoing stress-test-based diagnosis.
format Online
Article
Text
id pubmed-5874838
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-58748382018-04-02 Pharmacokinetics and Scintigraphic Imaging of the Hypoxia-Imaging Agent [(123)I]IAZA in Healthy Adults Following Exercise-Based Cardiac Stress † Stypinski, Daria McQuarrie, Stephen A. McEwan, Alexander J. B. Wiebe, Leonard I. Pharmaceutics Article The objective of this work is to evaluate the potential effect of cardiac stress exercise on the accumulation of [(123)I]IAZA, a radiopharmaceutical used to image focal tissue hypoxia, in otherwise normal myocardium in healthy volunteers, and to determine the impact of exercise on [(123)I]IAZA pharmacokinetics. The underlying goal is to establish a rational basis and a baseline for studies of focal myocardial hypoxia in cardiac patients using [(123)I]IAZA. Three healthy male volunteers ran the ‘Bruce’ treadmill protocol, a clinically-accepted protocol designed to expose myocardial ischemia in patients. The ‘Bruce’ criterion heart rate is 85% of [220–age]. Approximately one minute before reaching this level, [(123)I]IAZA (5.0 mCi/0.85 mg) was administered as a slow (1–3 min) single intravenous (i.v.) injection via an indwelling venous catheter. The volunteer continued running for an additional 1 min before being transferred to a gamma camera. Serum samples were collected from the arm contralateral to the administration site at pre-determined intervals from 1 min to 45 h post injection and were analyzed by radio HPLC. Pharmacokinetic (PK) parameters were derived for [(123)I]IAZA and total radioactivity (total[(123)I]) using compartmental and noncompartmental analyses. Whole-body planar scintigraphic images were acquired from 0.75 to 24 h after dosing. PK data and scintigraphic images were compared to previously published [(123)I]IAZA data from healthy volunteers rest. Following exercise stress, both [(123)I]IAZA and total[(123)I] exhibited bi-exponential decline profiles, with rapid distribution phases [half-lives (t(1/2α)) of 1.2 and 1.4 min, respectively], followed by slower elimination phases [t(1/2β) of 195 and 290 min, respectively]. Total body clearance (CL(TB)) and the steady state volume of distribution (V(ss)) were 0.647 L/kg and 185 mL/min, respectively, for [(123)I]IAZA and 0.785 L/kg and 135 mL/min, respectively, for total[(123)I]. The t(1/2β), CL(TB) and V(ss) values were comparable to those reported previously for rested volunteers. The t(1/2α) was approximately 4-fold shorter for [(123)I]IAZA and approximately 3-fold shorter for total[(123)I] under exercise relative to rested subjects. The heart region was visualized in early whole body scintigraphic images, but later images showed no accumulated radioactivity in this region, and no differences from images reported for rested volunteers were apparent. Minimal uptake of radiotracer in myocardium and skeletal muscle was consistent with uptake in non-stressed myocardium. Whole-body scintigrams for [(123)I]IAZA in exercise-stressed healthy volunteers were indistinguishable from images of non-exercised volunteers. There was no evidence of hypoxia-dependent binding in exercised but otherwise healthy myocardium, supporting the conclusion that exercise stress at Bruce protocol intensity does not induce measurable myocardial hypoxia. Effects of exercise on PK parameters were minimal; specifically, the t(1/2α) was shortened, reflecting increased cardiac output associated with exercise. It is concluded that because [(123)I]IAZA was not metabolically bound in exercise-stressed myocardium, a stress test will not create elevated myocardial background that would mask regions of myocardial perfusion deficiency. [(123)I]IAZA would therefore be suitable for the detection of viable, hypoxic myocardium in patients undergoing stress-test-based diagnosis. MDPI 2018-02-22 /pmc/articles/PMC5874838/ /pubmed/29470434 http://dx.doi.org/10.3390/pharmaceutics10010025 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Stypinski, Daria
McQuarrie, Stephen A.
McEwan, Alexander J. B.
Wiebe, Leonard I.
Pharmacokinetics and Scintigraphic Imaging of the Hypoxia-Imaging Agent [(123)I]IAZA in Healthy Adults Following Exercise-Based Cardiac Stress †
title Pharmacokinetics and Scintigraphic Imaging of the Hypoxia-Imaging Agent [(123)I]IAZA in Healthy Adults Following Exercise-Based Cardiac Stress †
title_full Pharmacokinetics and Scintigraphic Imaging of the Hypoxia-Imaging Agent [(123)I]IAZA in Healthy Adults Following Exercise-Based Cardiac Stress †
title_fullStr Pharmacokinetics and Scintigraphic Imaging of the Hypoxia-Imaging Agent [(123)I]IAZA in Healthy Adults Following Exercise-Based Cardiac Stress †
title_full_unstemmed Pharmacokinetics and Scintigraphic Imaging of the Hypoxia-Imaging Agent [(123)I]IAZA in Healthy Adults Following Exercise-Based Cardiac Stress †
title_short Pharmacokinetics and Scintigraphic Imaging of the Hypoxia-Imaging Agent [(123)I]IAZA in Healthy Adults Following Exercise-Based Cardiac Stress †
title_sort pharmacokinetics and scintigraphic imaging of the hypoxia-imaging agent [(123)i]iaza in healthy adults following exercise-based cardiac stress †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874838/
https://www.ncbi.nlm.nih.gov/pubmed/29470434
http://dx.doi.org/10.3390/pharmaceutics10010025
work_keys_str_mv AT stypinskidaria pharmacokineticsandscintigraphicimagingofthehypoxiaimagingagent123iiazainhealthyadultsfollowingexercisebasedcardiacstress
AT mcquarriestephena pharmacokineticsandscintigraphicimagingofthehypoxiaimagingagent123iiazainhealthyadultsfollowingexercisebasedcardiacstress
AT mcewanalexanderjb pharmacokineticsandscintigraphicimagingofthehypoxiaimagingagent123iiazainhealthyadultsfollowingexercisebasedcardiacstress
AT wiebeleonardi pharmacokineticsandscintigraphicimagingofthehypoxiaimagingagent123iiazainhealthyadultsfollowingexercisebasedcardiacstress