Cargando…
“Hybrid Topics” -- Facilitating the Interpretation of Topics Through the Addition of MeSH Descriptors to Bags of Words
Extracting and understanding information, themes and relationships from large collections of documents is an important task for biomedical researchers. Latent Dirichlet Allocation is an unsupervised topic modeling technique using the bag-of-words assumption that has been applied extensively to unvei...
Autores principales: | Yu, Zhiguo, Nguyen, Thang, Dhombres, Ferdinand, Johnson, Todd, Bodenreider, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875427/ https://www.ncbi.nlm.nih.gov/pubmed/29295179 |
Ejemplares similares
-
Meshable: searching PubMed abstracts by utilizing MeSH and MeSH-derived topical terms
por: Kim, Sun, et al.
Publicado: (2016) -
BioWordVec, improving biomedical word embeddings with subword information and MeSH
por: Zhang, Yijia, et al.
Publicado: (2019) -
MeSH Up: effective MeSH text classification for improved document retrieval
por: Trieschnigg, Dolf, et al.
Publicado: (2009) -
Automated MeSH Indexing of Biomedical Literature Using Contextualized Word Representations
por: Koutsomitropoulos, Dimitrios A., et al.
Publicado: (2020) -
MeSH and text-word search strategies: precision, recall, and their implications for library instruction
por: DeMars, Michelle M., et al.
Publicado: (2022)