Cargando…

Intra‐ and intervariability in beam data commissioning among water phantom scanning systems

Accurate beam data acquisition during commissioning is essential for modeling the treatment planning system and dose calculation in radiotherapy. Although currently several commercial scanning systems are available, there is no report that compared the differences among the systems because most inst...

Descripción completa

Detalles Bibliográficos
Autores principales: Akino, Yuichi, Gibbons, John P., Neck, Daniel W., Chu, Connel, Das, Indra J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875503/
https://www.ncbi.nlm.nih.gov/pubmed/25207415
http://dx.doi.org/10.1120/jacmp.v15i4.4850
Descripción
Sumario:Accurate beam data acquisition during commissioning is essential for modeling the treatment planning system and dose calculation in radiotherapy. Although currently several commercial scanning systems are available, there is no report that compared the differences among the systems because most institutions do not acquire several scanning systems due to the high cost, storage space, and infrequent usage. In this report, we demonstrate the intra‐ and intervariability of beam profiles measured with four commercial scanning systems. During a recent educational and training workshop, four different vendors of beam scanning water phantoms were invited to demonstrate the operation and data collection of their systems. Systems were set up utilizing vendor‐recommended protocols and were operated with a senior physicist, who was assigned as an instructor along with vendor. During the training sessions, each group was asked to measure beam parameters, and the intravariability in percent depth dose (PDD). At the end of the day, the profile of one linear accelerator was measured with each system to evaluate intervariability. Relatively very small (SD < 0.12%) intervariability in PDD was observed among four systems at a region deeper than peak (1.5 cm). All systems showed almost identical profiles. At the area within 80% of radiation field, the average, and maximum differences were within ± 0.35% and 0.80%, respectively, compared to arbitrarily chosen IBA system as reference. In the penumbrae region, the distance to agreement (DTA) of the region where dose difference exceed ± 1% was less than 1 mm. Repeated PDD measurement showed small intravariability with SD < 0.5%, although large SD was observed in the buildup region. All four water phantom scanning systems demonstrated adequate accuracy for beam data collection (i.e., within 1% of dose difference or 1 mm of DTA among each other). It is concluded that every system is capable of acquiring accurate beam. Thus the selection of a water scanning system should be based on institutional comfort, personal preference of software and hardware, and financial consideration. PACS number: 87.53.Bn