Cargando…
The influence of thoracic gas compression and airflow density dependence on the assessment of pulmonary function at high altitude
The purpose of this report was to illustrate how thoracic gas compression (TGC) artifact, and differences in air density, may together conflate the interpretation of changes in the forced expiratory flows (FEFs) at high altitude (>2400 m). Twenty‐four adults (10 women; 44 ± 15 year) with normal b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875542/ https://www.ncbi.nlm.nih.gov/pubmed/29595881 http://dx.doi.org/10.14814/phy2.13576 |
_version_ | 1783310366057431040 |
---|---|
author | Cross, Troy J. Wheatley, Courtney Stewart, Glenn M. Coffman, Kirsten Carlson, Alex Stepanek, Jan Morris, Norman R. Johnson, Bruce D. |
author_facet | Cross, Troy J. Wheatley, Courtney Stewart, Glenn M. Coffman, Kirsten Carlson, Alex Stepanek, Jan Morris, Norman R. Johnson, Bruce D. |
author_sort | Cross, Troy J. |
collection | PubMed |
description | The purpose of this report was to illustrate how thoracic gas compression (TGC) artifact, and differences in air density, may together conflate the interpretation of changes in the forced expiratory flows (FEFs) at high altitude (>2400 m). Twenty‐four adults (10 women; 44 ± 15 year) with normal baseline pulmonary function (>90% predicted) completed a 12‐day sojourn at Mt. Kilimanjaro. Participants were assessed at Moshi (Day 0, 853 m) and at Barafu Camp (Day 9, 4837 m). Typical maximal expiratory flow‐volume (MEFV) curves were obtained in accordance with ATS/ERS guidelines, and were either: (1) left unadjusted; (2) adjusted for TGC by constructing a “maximal perimeter” MEFV curve; or (3) adjusted for both TGC and differences in air density between altitudes. Forced vital capacity (FVC) was lower at Barafu compared with Moshi camp (5.19 ± 1.29 L vs. 5.40 ± 1.45 L, P < 0.05). Unadjusted data indicated no difference in the mid‐expiratory flows (FEF (25–75%)) between altitudes (∆ + 0.03 ± 0.53 L sec(−1); ∆ + 1.2 ± 11.9%). Conversely, TGC‐adjusted data revealed that FEF (25–75%) was significantly improved by sojourning at high altitude (∆ + 0.58 ± 0.78 L sec(−1); ∆ + 12.9 ± 16.5%, P < 0.05). Finally, when data were adjusted for TGC and air density, FEFs were “less than expected” due to the lower air density at Barafu compared with Moshi camp (∆–0.54 ± 0.68 L sec(−1); ∆–10.9 ± 13.0%, P < 0.05), indicating a mild obstructive defect had developed on ascent to high altitude. These findings clearly demonstrate the influence that TGC artifact, and differences in air density, bear on flow‐volume data; consequently, it is imperative that future investigators adjust for, or at least acknowledge, these confounding factors when comparing FEFs between altitudes. |
format | Online Article Text |
id | pubmed-5875542 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58755422018-04-02 The influence of thoracic gas compression and airflow density dependence on the assessment of pulmonary function at high altitude Cross, Troy J. Wheatley, Courtney Stewart, Glenn M. Coffman, Kirsten Carlson, Alex Stepanek, Jan Morris, Norman R. Johnson, Bruce D. Physiol Rep Original Research The purpose of this report was to illustrate how thoracic gas compression (TGC) artifact, and differences in air density, may together conflate the interpretation of changes in the forced expiratory flows (FEFs) at high altitude (>2400 m). Twenty‐four adults (10 women; 44 ± 15 year) with normal baseline pulmonary function (>90% predicted) completed a 12‐day sojourn at Mt. Kilimanjaro. Participants were assessed at Moshi (Day 0, 853 m) and at Barafu Camp (Day 9, 4837 m). Typical maximal expiratory flow‐volume (MEFV) curves were obtained in accordance with ATS/ERS guidelines, and were either: (1) left unadjusted; (2) adjusted for TGC by constructing a “maximal perimeter” MEFV curve; or (3) adjusted for both TGC and differences in air density between altitudes. Forced vital capacity (FVC) was lower at Barafu compared with Moshi camp (5.19 ± 1.29 L vs. 5.40 ± 1.45 L, P < 0.05). Unadjusted data indicated no difference in the mid‐expiratory flows (FEF (25–75%)) between altitudes (∆ + 0.03 ± 0.53 L sec(−1); ∆ + 1.2 ± 11.9%). Conversely, TGC‐adjusted data revealed that FEF (25–75%) was significantly improved by sojourning at high altitude (∆ + 0.58 ± 0.78 L sec(−1); ∆ + 12.9 ± 16.5%, P < 0.05). Finally, when data were adjusted for TGC and air density, FEFs were “less than expected” due to the lower air density at Barafu compared with Moshi camp (∆–0.54 ± 0.68 L sec(−1); ∆–10.9 ± 13.0%, P < 0.05), indicating a mild obstructive defect had developed on ascent to high altitude. These findings clearly demonstrate the influence that TGC artifact, and differences in air density, bear on flow‐volume data; consequently, it is imperative that future investigators adjust for, or at least acknowledge, these confounding factors when comparing FEFs between altitudes. John Wiley and Sons Inc. 2018-03-29 /pmc/articles/PMC5875542/ /pubmed/29595881 http://dx.doi.org/10.14814/phy2.13576 Text en © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Cross, Troy J. Wheatley, Courtney Stewart, Glenn M. Coffman, Kirsten Carlson, Alex Stepanek, Jan Morris, Norman R. Johnson, Bruce D. The influence of thoracic gas compression and airflow density dependence on the assessment of pulmonary function at high altitude |
title | The influence of thoracic gas compression and airflow density dependence on the assessment of pulmonary function at high altitude |
title_full | The influence of thoracic gas compression and airflow density dependence on the assessment of pulmonary function at high altitude |
title_fullStr | The influence of thoracic gas compression and airflow density dependence on the assessment of pulmonary function at high altitude |
title_full_unstemmed | The influence of thoracic gas compression and airflow density dependence on the assessment of pulmonary function at high altitude |
title_short | The influence of thoracic gas compression and airflow density dependence on the assessment of pulmonary function at high altitude |
title_sort | influence of thoracic gas compression and airflow density dependence on the assessment of pulmonary function at high altitude |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875542/ https://www.ncbi.nlm.nih.gov/pubmed/29595881 http://dx.doi.org/10.14814/phy2.13576 |
work_keys_str_mv | AT crosstroyj theinfluenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT wheatleycourtney theinfluenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT stewartglennm theinfluenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT coffmankirsten theinfluenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT carlsonalex theinfluenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT stepanekjan theinfluenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT morrisnormanr theinfluenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT johnsonbruced theinfluenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT crosstroyj influenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT wheatleycourtney influenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT stewartglennm influenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT coffmankirsten influenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT carlsonalex influenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT stepanekjan influenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT morrisnormanr influenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude AT johnsonbruced influenceofthoracicgascompressionandairflowdensitydependenceontheassessmentofpulmonaryfunctionathighaltitude |