Cargando…

Integrated analysis of tumor differentiation genes in pancreatic adenocarcinoma

BACKGROUND: Tumor differentiation is an important process in the development of cancer. It is valuable to identify key differentiation related genes in the prognosis and therapy of pancreatic adenocarcinoma. METHODS: The mRNA expression data were downloaded from the Cancer Genome Atlas database. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Xi, Ting, Zhang, Guizhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875763/
https://www.ncbi.nlm.nih.gov/pubmed/29596435
http://dx.doi.org/10.1371/journal.pone.0193427
Descripción
Sumario:BACKGROUND: Tumor differentiation is an important process in the development of cancer. It is valuable to identify key differentiation related genes in the prognosis and therapy of pancreatic adenocarcinoma. METHODS: The mRNA expression data were downloaded from the Cancer Genome Atlas database. Then, differentially expressed tumor differentiation related genes were identified. Additionally, Gene Ontology functional categories and Kyoto Encyclopedia of Genes and Genomes biochemical pathway was used to explore the function. In addition, receiver operating characteristic and survival analysis were carried out to assess the diagnosis and prognosis value. Finally, the electronic validation of selected tumor differentiation related genes was performed. RESULTS: A total of 932 genes were identified. Among which, 8 genes including JUB, ERLIN1, HMGA2, FAM110B, EGFR, MCM2, TCTA and SSTR1 were differentially expressed in all different tumor differentiation grades. Functional analysis revealed those genes between highly differentiated and other differentiation were remarkably enriched in pancreatic adenocarcinoma and cell cycle pathway. Finally, ERLIN1, HMGA2, FAM110B, EGFR, MCM2, BCL2L1, E2F1 and RAC1 were associated with the survival time of pancreatic adenocarcinoma patient. Among these genes, JUB, ERLIN1, FAM110B, MCM2 and BCL2L1 also had a diagnosis value for pancreatic adenocarcinoma. Additionally, the expression trend of JUB, HMGA2 and MCM2 was increased along with the tumor differentiation grades. And the expression trend of FAM110B was decreased along with the tumor differentiation grades. The electronic validation result was consistent with the bioinformatics analysis. CONCLUSIONS: 12 tumor differentiation related genes including JUB, ERLIN1, HMGA2, FAM110B, EGFR, MCM2, TCTA, SSTR1, BCL2L1, E2F1, RAC1 and STAT1 played crucial roles in the differentiation of pancreatic adenocarcinoma.