Cargando…
Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2)
The tumor microenvironment (TME) promotes tumor cell invasion and metastasis. An important step in the shift to a pro-cancerous microenvironment is the transformation of normal stromal fibroblasts to carcinoma-associated fibroblasts (CAFs). CAFs are present in a majority of solid tumors and can dire...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875872/ https://www.ncbi.nlm.nih.gov/pubmed/29596520 http://dx.doi.org/10.1371/journal.pone.0195278 |
_version_ | 1783310431032442880 |
---|---|
author | Dvorak, Kaitlyn M. Pettee, Krista M. Rubinic-Minotti, Kaitlin Su, Robin Nestor-Kalinoski, Andrea Eisenmann, Kathryn M. |
author_facet | Dvorak, Kaitlyn M. Pettee, Krista M. Rubinic-Minotti, Kaitlin Su, Robin Nestor-Kalinoski, Andrea Eisenmann, Kathryn M. |
author_sort | Dvorak, Kaitlyn M. |
collection | PubMed |
description | The tumor microenvironment (TME) promotes tumor cell invasion and metastasis. An important step in the shift to a pro-cancerous microenvironment is the transformation of normal stromal fibroblasts to carcinoma-associated fibroblasts (CAFs). CAFs are present in a majority of solid tumors and can directly promote tumor cell motility via cytokine, chemokine and growth factor secretion into the TME. The exact effects that the TME has upon cytoskeletal regulation in motile tumor cells remain enigmatic. The conserved formin family of cytoskeleton regulating proteins plays an essential role in the assembly and/or bundling of unbranched actin filaments. Mammalian Diaphanous-related formin 2 (mDia2/DIAPH3/Drf3/Dia) assembles a dynamic F-actin cytoskeleton that underlies tumor cell migration and invasion. We therefore sought to understand whether CAF-derived chemokines impact breast tumor cell motility through modification of the formin-assembled F-actin cytoskeleton. In MDA-MB-231 cells, conditioned media (CM) from WS19T CAFs, a human breast tumor-adjacent CAF line, significantly and robustly increased wound closure and invasion relative to normal human mammary fibroblast (HMF)-CM. WS19T-CM also promoted proteasome-mediated mDia2 degradation in MDA-MB-231 cells relative to control HMF-CM and WS21T CAF-CM, a breast CAF cell line that failed to promote robust MDA-MB-231 migration. Cytokine array analysis of CM identified up-regulated secreted factors in WS19T relative to control WS21T CM. We identified CXCL12 as a CM factor influencing loss of mDia2 protein while increasing MDA-MB-231 cell migration. Our data suggest a mechanism whereby CAFs promote tumor cell migration and invasion through CXCL12 secretion to regulate the mDia2-directed cytoskeleton in breast tumor cells. |
format | Online Article Text |
id | pubmed-5875872 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58758722018-04-13 Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2) Dvorak, Kaitlyn M. Pettee, Krista M. Rubinic-Minotti, Kaitlin Su, Robin Nestor-Kalinoski, Andrea Eisenmann, Kathryn M. PLoS One Research Article The tumor microenvironment (TME) promotes tumor cell invasion and metastasis. An important step in the shift to a pro-cancerous microenvironment is the transformation of normal stromal fibroblasts to carcinoma-associated fibroblasts (CAFs). CAFs are present in a majority of solid tumors and can directly promote tumor cell motility via cytokine, chemokine and growth factor secretion into the TME. The exact effects that the TME has upon cytoskeletal regulation in motile tumor cells remain enigmatic. The conserved formin family of cytoskeleton regulating proteins plays an essential role in the assembly and/or bundling of unbranched actin filaments. Mammalian Diaphanous-related formin 2 (mDia2/DIAPH3/Drf3/Dia) assembles a dynamic F-actin cytoskeleton that underlies tumor cell migration and invasion. We therefore sought to understand whether CAF-derived chemokines impact breast tumor cell motility through modification of the formin-assembled F-actin cytoskeleton. In MDA-MB-231 cells, conditioned media (CM) from WS19T CAFs, a human breast tumor-adjacent CAF line, significantly and robustly increased wound closure and invasion relative to normal human mammary fibroblast (HMF)-CM. WS19T-CM also promoted proteasome-mediated mDia2 degradation in MDA-MB-231 cells relative to control HMF-CM and WS21T CAF-CM, a breast CAF cell line that failed to promote robust MDA-MB-231 migration. Cytokine array analysis of CM identified up-regulated secreted factors in WS19T relative to control WS21T CM. We identified CXCL12 as a CM factor influencing loss of mDia2 protein while increasing MDA-MB-231 cell migration. Our data suggest a mechanism whereby CAFs promote tumor cell migration and invasion through CXCL12 secretion to regulate the mDia2-directed cytoskeleton in breast tumor cells. Public Library of Science 2018-03-29 /pmc/articles/PMC5875872/ /pubmed/29596520 http://dx.doi.org/10.1371/journal.pone.0195278 Text en © 2018 Dvorak et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Dvorak, Kaitlyn M. Pettee, Krista M. Rubinic-Minotti, Kaitlin Su, Robin Nestor-Kalinoski, Andrea Eisenmann, Kathryn M. Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2) |
title | Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2) |
title_full | Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2) |
title_fullStr | Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2) |
title_full_unstemmed | Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2) |
title_short | Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2) |
title_sort | carcinoma associated fibroblasts (cafs) promote breast cancer motility by suppressing mammalian diaphanous-related formin-2 (mdia2) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875872/ https://www.ncbi.nlm.nih.gov/pubmed/29596520 http://dx.doi.org/10.1371/journal.pone.0195278 |
work_keys_str_mv | AT dvorakkaitlynm carcinomaassociatedfibroblastscafspromotebreastcancermotilitybysuppressingmammaliandiaphanousrelatedformin2mdia2 AT petteekristam carcinomaassociatedfibroblastscafspromotebreastcancermotilitybysuppressingmammaliandiaphanousrelatedformin2mdia2 AT rubinicminottikaitlin carcinomaassociatedfibroblastscafspromotebreastcancermotilitybysuppressingmammaliandiaphanousrelatedformin2mdia2 AT surobin carcinomaassociatedfibroblastscafspromotebreastcancermotilitybysuppressingmammaliandiaphanousrelatedformin2mdia2 AT nestorkalinoskiandrea carcinomaassociatedfibroblastscafspromotebreastcancermotilitybysuppressingmammaliandiaphanousrelatedformin2mdia2 AT eisenmannkathrynm carcinomaassociatedfibroblastscafspromotebreastcancermotilitybysuppressingmammaliandiaphanousrelatedformin2mdia2 |