Cargando…
Evaluation of Screened Lignin-degrading Fungi for the Biological Pretreatment of Corn Stover
The biological pretreatment of lignocellulosic biomass is a low-cost and eco-friendly method for facilitating enzymatic hydrolysis. In this study, strains with lignin depletion capability were screened using a high-throughput screening method. Sixty-three strains were screened out and Myrothecium ve...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876370/ https://www.ncbi.nlm.nih.gov/pubmed/29599465 http://dx.doi.org/10.1038/s41598-018-23626-6 |
Sumario: | The biological pretreatment of lignocellulosic biomass is a low-cost and eco-friendly method for facilitating enzymatic hydrolysis. In this study, strains with lignin depletion capability were screened using a high-throughput screening method. Sixty-three strains were screened out and Myrothecium verrucaria secreted three lignin-degrading enzymes simultaneously during the bio-pretreatment process. The activity levels of laccase, lignin peroxidase and manganese peroxidase were 6.61, 0.78 and 1.31 U g(−1) dry biomass. The content of lignin in corn stover decreased by 42.30% after bio-pretreatment, and the conversion rate increased by 123.84% during the subsequent saccharification process in comparison with the untreated corn stover. Furthermore, the effects of bio-pretreatment on the structure of corn stover were presented using a scanning electron microscope (SEM), Brunauer-Emmet-Teller (BET), X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). The results showed that M.V. is a promising lignin-degrading fungus. This research demonstrated an efficient pretreatment approach for enhancing the enzymatic saccharification of corn stover. |
---|