Cargando…

Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet

Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin–orbit coupling, the potential applications are linked to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sørensen, Mikkel A., Hansen, Ursula B., Perfetti, Mauro, Pedersen, Kasper S., Bartolomé, Elena, Simeoni, Giovanna G., Mutka, Hannu, Rols, Stéphane, Jeong, Minki, Zivkovic, Ivica, Retuerto, Maria, Arauzo, Ana, Bartolomé, Juan, Piligkos, Stergios, Weihe, Høgni, Doerrer, Linda H., van Slageren, Joris, Rønnow, Henrik M., Lefmann, Kim, Bendix, Jesper
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876375/
https://www.ncbi.nlm.nih.gov/pubmed/29599433
http://dx.doi.org/10.1038/s41467-018-03706-x
_version_ 1783310500456562688
author Sørensen, Mikkel A.
Hansen, Ursula B.
Perfetti, Mauro
Pedersen, Kasper S.
Bartolomé, Elena
Simeoni, Giovanna G.
Mutka, Hannu
Rols, Stéphane
Jeong, Minki
Zivkovic, Ivica
Retuerto, Maria
Arauzo, Ana
Bartolomé, Juan
Piligkos, Stergios
Weihe, Høgni
Doerrer, Linda H.
van Slageren, Joris
Rønnow, Henrik M.
Lefmann, Kim
Bendix, Jesper
author_facet Sørensen, Mikkel A.
Hansen, Ursula B.
Perfetti, Mauro
Pedersen, Kasper S.
Bartolomé, Elena
Simeoni, Giovanna G.
Mutka, Hannu
Rols, Stéphane
Jeong, Minki
Zivkovic, Ivica
Retuerto, Maria
Arauzo, Ana
Bartolomé, Juan
Piligkos, Stergios
Weihe, Høgni
Doerrer, Linda H.
van Slageren, Joris
Rønnow, Henrik M.
Lefmann, Kim
Bendix, Jesper
author_sort Sørensen, Mikkel A.
collection PubMed
description Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin–orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C(4)) to pseudo-linear (D(4d)) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.
format Online
Article
Text
id pubmed-5876375
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58763752018-04-02 Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet Sørensen, Mikkel A. Hansen, Ursula B. Perfetti, Mauro Pedersen, Kasper S. Bartolomé, Elena Simeoni, Giovanna G. Mutka, Hannu Rols, Stéphane Jeong, Minki Zivkovic, Ivica Retuerto, Maria Arauzo, Ana Bartolomé, Juan Piligkos, Stergios Weihe, Høgni Doerrer, Linda H. van Slageren, Joris Rønnow, Henrik M. Lefmann, Kim Bendix, Jesper Nat Commun Article Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin–orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C(4)) to pseudo-linear (D(4d)) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting. Nature Publishing Group UK 2018-03-29 /pmc/articles/PMC5876375/ /pubmed/29599433 http://dx.doi.org/10.1038/s41467-018-03706-x Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Sørensen, Mikkel A.
Hansen, Ursula B.
Perfetti, Mauro
Pedersen, Kasper S.
Bartolomé, Elena
Simeoni, Giovanna G.
Mutka, Hannu
Rols, Stéphane
Jeong, Minki
Zivkovic, Ivica
Retuerto, Maria
Arauzo, Ana
Bartolomé, Juan
Piligkos, Stergios
Weihe, Høgni
Doerrer, Linda H.
van Slageren, Joris
Rønnow, Henrik M.
Lefmann, Kim
Bendix, Jesper
Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet
title Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet
title_full Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet
title_fullStr Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet
title_full_unstemmed Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet
title_short Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet
title_sort chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876375/
https://www.ncbi.nlm.nih.gov/pubmed/29599433
http://dx.doi.org/10.1038/s41467-018-03706-x
work_keys_str_mv AT sørensenmikkela chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT hansenursulab chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT perfettimauro chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT pedersenkaspers chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT bartolomeelena chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT simeonigiovannag chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT mutkahannu chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT rolsstephane chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT jeongminki chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT zivkovicivica chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT retuertomaria chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT arauzoana chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT bartolomejuan chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT piligkosstergios chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT weihehøgni chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT doerrerlindah chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT vanslagerenjoris chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT rønnowhenrikm chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT lefmannkim chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet
AT bendixjesper chemicaltunnelsplittingengineeringinadysprosiumbasedmolecularnanomagnet