Cargando…

Cooperative Vehicular Traffic Monitoring in Realistic Low Penetration Scenarios: The COLOMBO Experience

The relevance of effective and efficient solutions for vehicle traffic surveillance is widely recognized in order to enable advanced strategies for traffic management, e.g., based on dynamically adaptive and decentralized traffic light management. However, most related solutions in the literature, b...

Descripción completa

Detalles Bibliográficos
Autores principales: Bellavista, Paolo, Caselli, Federico, Corradi, Antonio, Foschini, Luca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876597/
https://www.ncbi.nlm.nih.gov/pubmed/29522427
http://dx.doi.org/10.3390/s18030822
Descripción
Sumario:The relevance of effective and efficient solutions for vehicle traffic surveillance is widely recognized in order to enable advanced strategies for traffic management, e.g., based on dynamically adaptive and decentralized traffic light management. However, most related solutions in the literature, based on the powerful enabler of cooperative vehicular communications, assume the complete penetration rate of connectivity/communication technologies (and willingness to participate in the collaborative surveillance service) over the targeted vehicle population, thus making them not applicable nowadays. The paper originally proposes an innovative solution for cooperative traffic surveillance based on vehicular communications capable of: (i) working with low penetration rates of the proposed technology and (ii) of collecting a large set of monitoring data about vehicle mobility in targeted areas of interest. The paper presents insights and lessons learnt from the design and implementation work of the proposed solution. Moreover, it reports extensive performance evaluation results collected on realistic simulation scenarios based on the usage of iTETRIS with real traces of vehicular traffic of the city of Bologna. The reported results show the capability of our proposal to consistently estimate the real vehicular traffic even with low penetration rates of our solution (only 10%).