Cargando…
Urban Area Detection in Very High Resolution Remote Sensing Images Using Deep Convolutional Neural Networks
Detecting urban areas from very high resolution (VHR) remote sensing images plays an important role in the field of Earth observation. The recently-developed deep convolutional neural networks (DCNNs), which can extract rich features from training data automatically, have achieved outstanding perfor...
Autores principales: | Tian, Tian, Li, Chang, Xu, Jinkang, Ma, Jiayi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876601/ https://www.ncbi.nlm.nih.gov/pubmed/29562651 http://dx.doi.org/10.3390/s18030904 |
Ejemplares similares
-
Deep neural network for remote-sensing image interpretation: status and perspectives
por: Li, Jiayi, et al.
Publicado: (2019) -
Individual Tree Species Classification Based on Convolutional Neural Networks and Multitemporal High-Resolution Remote Sensing Images
por: Guo, Xianfei, et al.
Publicado: (2022) -
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
por: Yu, Donghang, et al.
Publicado: (2020) -
Classification of Compressed Remote Sensing Multispectral Images via Convolutional Neural Networks
por: Giannopoulos, Michalis, et al.
Publicado: (2020) -
Remote sensing image super-resolution using multi-scale convolutional sparse coding network
por: Cheng, Ruihong, et al.
Publicado: (2022)