Cargando…
Region Based CNN for Foreign Object Debris Detection on Airfield Pavement
In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the impr...
Autores principales: | Cao, Xiaoguang, Wang, Peng, Meng, Cai, Bai, Xiangzhi, Gong, Guoping, Liu, Miaoming, Qi, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876630/ https://www.ncbi.nlm.nih.gov/pubmed/29494524 http://dx.doi.org/10.3390/s18030737 |
Ejemplares similares
-
Fatigue Models for Airfield Concrete Pavement: Literature Review and Discussion
por: Yuan, Jie, et al.
Publicado: (2021) -
Volatilization Potential of Per‐ and Poly‐fluoroalkyl Substances from Airfield Pavements and during Recycling of Asphalt
por: Bastow, Trevor P., et al.
Publicado: (2022) -
Foreign Object Debris Automatic Target Detection for Millimeter-Wave Surveillance Radar
por: Qin, Fei, et al.
Publicado: (2021) -
Foreign Object Debris Detection for Optical Imaging Sensors Based on Random Forest
por: Jing, Ying, et al.
Publicado: (2022) -
Analysis and Assessment of the Usefulness of Recycled Plastic Materials for the Production of Airfield Geocell
por: Wesołowski, Mariusz, et al.
Publicado: (2021)