Cargando…
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details,...
Autores principales: | Du, Xiaofeng, Qu, Xiaobo, He, Yifan, Guo, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876633/ https://www.ncbi.nlm.nih.gov/pubmed/29509666 http://dx.doi.org/10.3390/s18030789 |
Ejemplares similares
-
Super-resolution recurrent convolutional neural networks for learning with multi-resolution whole slide images
por: Mukherjee, Lopamudra, et al.
Publicado: (2019) -
Multi-scale Xception based depthwise separable convolution for single image super-resolution
por: Muhammad, Wazir, et al.
Publicado: (2021) -
Fusing multi-scale information in convolution network for MR image super-resolution reconstruction
por: Liu, Chang, et al.
Publicado: (2018) -
Remote sensing image super-resolution using multi-scale convolutional sparse coding network
por: Cheng, Ruihong, et al.
Publicado: (2022) -
Instant multicolor super-resolution microscopy with deep convolutional neural network
por: Wang, Songyue, et al.
Publicado: (2021)