Cargando…

Energy Efficient Pico Cell Range Expansion and Density Joint Optimization for Heterogeneous Networks with eICIC

Heterogeneous networks, constituted by conventional macro cells and overlaying pico cells, have been deemed a promising paradigm to support the deluge of data traffic with higher spectral efficiency and Energy Efficiency (EE). In order to deploy pico cells in reality, the density of Pico Base Statio...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yanzan, Xia, Wenqing, Zhang, Shunqing, Wu, Yating, Wang, Tao, Fang, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876702/
https://www.ncbi.nlm.nih.gov/pubmed/29498701
http://dx.doi.org/10.3390/s18030762
Descripción
Sumario:Heterogeneous networks, constituted by conventional macro cells and overlaying pico cells, have been deemed a promising paradigm to support the deluge of data traffic with higher spectral efficiency and Energy Efficiency (EE). In order to deploy pico cells in reality, the density of Pico Base Stations (PBSs) and the pico Cell Range Expansion (CRE) are two important factors for the network spectral efficiency as well as EE improvement. However, associated with the range and density evolution, the inter-tier interference within the heterogeneous architecture will be challenging, and the time domain Enhanced Inter-cell Interference Coordination (eICIC) technique becomes necessary. Aiming to improve the network EE, the above factors are jointly considered in this paper. More specifically, we first derive the closed-form expression of the network EE as a function of the density of PBSs and pico CRE bias based on stochastic geometry theory, followed by a linear search algorithm to optimize the pico CRE bias and PBS density, respectively. Moreover, in order to realize the pico CRE bias and PBS density joint optimization, a heuristic algorithm is proposed to achieve the network EE maximization. Numerical simulations show that our proposed pico CRE bias and PBS density joint optimization algorithm can improve the network EE significantly with low computational complexity.