Cargando…
Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine
Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. I...
Autores principales: | Ma, Zhiyuan, Luo, Guangchun, Qin, Ke, Wang, Nan, Niu, Weina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876707/ https://www.ncbi.nlm.nih.gov/pubmed/29494543 http://dx.doi.org/10.3390/s18030742 |
Ejemplares similares
-
Cross-Domain Active Learning for Electronic Nose Drift Compensation
por: Sun, Fangyu, et al.
Publicado: (2022) -
Domain Correction Based on Kernel Transformation for Drift Compensation in the E-Nose System
por: Tao, Yang, et al.
Publicado: (2018) -
Wasserstein Distance Learns Domain Invariant Feature Representations for Drift Compensation of E-Nose
por: Tao, Yang, et al.
Publicado: (2019) -
Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose
por: Liu, Tao, et al.
Publicado: (2018) -
Active Learning on Dynamic Clustering for Drift Compensation in an Electronic Nose System
por: Liu, Tao, et al.
Publicado: (2019)