Cargando…

An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments

Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user’s queries or applications. Recent works perform provisioning by clustering sensor nodes b...

Descripción completa

Detalles Bibliográficos
Autores principales: Lemos, Marcus Vinícius de S., Filho, Raimir Holanda, Rabêlo, Ricardo de Andrade L., de Carvalho, Carlos Giovanni N., Mendes, Douglas Lopes de S., Costa, Valney da Gama
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876799/
https://www.ncbi.nlm.nih.gov/pubmed/29495406
http://dx.doi.org/10.3390/s18030689
_version_ 1783310585015828480
author Lemos, Marcus Vinícius de S.
Filho, Raimir Holanda
Rabêlo, Ricardo de Andrade L.
de Carvalho, Carlos Giovanni N.
Mendes, Douglas Lopes de S.
Costa, Valney da Gama
author_facet Lemos, Marcus Vinícius de S.
Filho, Raimir Holanda
Rabêlo, Ricardo de Andrade L.
de Carvalho, Carlos Giovanni N.
Mendes, Douglas Lopes de S.
Costa, Valney da Gama
author_sort Lemos, Marcus Vinícius de S.
collection PubMed
description Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user’s queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user’s queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios.
format Online
Article
Text
id pubmed-5876799
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-58767992018-04-09 An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments Lemos, Marcus Vinícius de S. Filho, Raimir Holanda Rabêlo, Ricardo de Andrade L. de Carvalho, Carlos Giovanni N. Mendes, Douglas Lopes de S. Costa, Valney da Gama Sensors (Basel) Article Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user’s queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user’s queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios. MDPI 2018-02-26 /pmc/articles/PMC5876799/ /pubmed/29495406 http://dx.doi.org/10.3390/s18030689 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lemos, Marcus Vinícius de S.
Filho, Raimir Holanda
Rabêlo, Ricardo de Andrade L.
de Carvalho, Carlos Giovanni N.
Mendes, Douglas Lopes de S.
Costa, Valney da Gama
An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments
title An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments
title_full An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments
title_fullStr An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments
title_full_unstemmed An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments
title_short An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments
title_sort energy-efficient approach to enhance virtual sensors provisioning in sensor clouds environments
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876799/
https://www.ncbi.nlm.nih.gov/pubmed/29495406
http://dx.doi.org/10.3390/s18030689
work_keys_str_mv AT lemosmarcusviniciusdes anenergyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT filhoraimirholanda anenergyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT rabeloricardodeandradel anenergyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT decarvalhocarlosgiovannin anenergyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT mendesdouglaslopesdes anenergyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT costavalneydagama anenergyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT lemosmarcusviniciusdes energyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT filhoraimirholanda energyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT rabeloricardodeandradel energyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT decarvalhocarlosgiovannin energyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT mendesdouglaslopesdes energyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments
AT costavalneydagama energyefficientapproachtoenhancevirtualsensorsprovisioninginsensorcloudsenvironments