Cargando…
Segmentation of Oil Spills on Side-Looking Airborne Radar Imagery with Autoencoders
In this work, we use deep neural autoencoders to segment oil spills from Side-Looking Airborne Radar (SLAR) imagery. Synthetic Aperture Radar (SAR) has been much exploited for ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature use SLAR. Our sensor...
Autores principales: | Gallego, Antonio-Javier, Gil, Pablo, Pertusa, Antonio, Fisher, Robert B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876930/ https://www.ncbi.nlm.nih.gov/pubmed/29509720 http://dx.doi.org/10.3390/s18030797 |
Ejemplares similares
-
Oil Spill Detection in Terma-Side-Looking Airborne Radar Images Using Image Features and Region Segmentation
por: Gil, Pablo, et al.
Publicado: (2018) -
Adaptive Enhancement of X-Band Marine Radar Imagery to Detect Oil Spill Segments
por: Liu, Peng, et al.
Publicado: (2017) -
Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea
por: Angelliaume, Sébastien, et al.
Publicado: (2017) -
Detection of Oil Spill Using SAR Imagery Based on AlexNet Model
por: Wang, Xinzhe, et al.
Publicado: (2021) -
Experimental L-Band Airborne SAR for Oil Spill Response at Sea and in Coastal Waters
por: Jones, Cathleen E., et al.
Publicado: (2018)