Cargando…
Comparative Analysis of GF-1 and HJ-1 Data to Derive the Optimal Scale for Monitoring Heavy Metal Stress in Rice
Remote sensing can actively monitor heavy metal contamination in crops, but with the increase of satellite sensors, the optimal scale for monitoring heavy metal stress in rice is still unknown. This study focused on identifying the optimal scale by comparing the ability to detect heavy metal stress...
Autores principales: | Wang, Dongmin, Liu, Xiangnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877006/ https://www.ncbi.nlm.nih.gov/pubmed/29509724 http://dx.doi.org/10.3390/ijerph15030461 |
Ejemplares similares
-
Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model
por: Huang, Zhi, et al.
Publicado: (2016) -
Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice
por: Zhao, Shuang, et al.
Publicado: (2018) -
Extraction of Rice Phenological Differences under Heavy Metal Stress Using EVI Time-Series from HJ-1A/B Data
por: Liu, Shuyuan, et al.
Publicado: (2017) -
Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring
por: Wu, Mingquan, et al.
Publicado: (2015) -
A Framework for Rice Heavy Metal Stress Monitoring Based on Phenological Phase Space and Temporal Profile Analysis
por: Zou, Xinyu, et al.
Publicado: (2019)