Cargando…
A Neural Network Approach for Building An Obstacle Detection Model by Fusion of Proximity Sensors Data
Proximity sensors are broadly used in mobile robots for obstacle detection. The traditional calibration process of this kind of sensor could be a time-consuming task because it is usually done by identification in a manual and repetitive way. The resulting obstacles detection models are usually nonl...
Autores principales: | Farias, Gonzalo, Fabregas, Ernesto, Peralta, Emmanuel, Vargas, Héctor, Hermosilla, Gabriel, Garcia, Gonzalo, Dormido, Sebastián |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877112/ https://www.ncbi.nlm.nih.gov/pubmed/29495338 http://dx.doi.org/10.3390/s18030683 |
Ejemplares similares
-
Deep learning exoplanets detection by combining real and synthetic data
por: Cuéllar, Sara, et al.
Publicado: (2022) -
A Distributed Vision-Based Navigation System for Khepera IV Mobile Robots
por: Farias, Gonzalo, et al.
Publicado: (2020) -
A Mobile Robots Experimental Environment with Event-Based Wireless Communication
por: Guinaldo, María, et al.
Publicado: (2013) -
Modeling and Control of a Spherical Robot in the CoppeliaSim Simulator
por: Montenegro, Guelis, et al.
Publicado: (2022) -
Development and Control of a Real Spherical Robot
por: Schröder, Karla, et al.
Publicado: (2023)