Cargando…
Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal
The recorded electroencephalography (EEG) signal is often contaminated with different kinds of artifacts and noise. Singular spectrum analysis (SSA) is a powerful tool for extracting the brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed component (...
Autores principales: | Xu, Shanzhi, Hu, Hai, Ji, Linhong, Wang, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877194/ https://www.ncbi.nlm.nih.gov/pubmed/29495415 http://dx.doi.org/10.3390/s18030697 |
Ejemplares similares
-
An adaptive singular spectrum analysis method for extracting brain rhythms of electroencephalography
por: Hu, Hai, et al.
Publicado: (2017) -
Removal of EMG Artifacts from Multichannel EEG Signals Using Combined Singular Spectrum Analysis and Canonical Correlation Analysis
por: Liu, Qingze, et al.
Publicado: (2019) -
Circulant Singular Spectrum Analysis and Discrete Wavelet Transform for Automated Removal of EOG Artifacts from EEG Signals
por: Yedukondalu, Jammisetty, et al.
Publicado: (2023) -
Singular spectrum analysis with R
por: Golyandina, Nina, et al.
Publicado: (2018) -
Gorenstein quotient singularities in dimension three
por: Yau, Stephen ST, et al.
Publicado: (2014)