Cargando…
How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data
The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until n...
Autores principales: | Furquim, Gustavo, Filho, Geraldo P. R., Jalali, Roozbeh, Pessin, Gustavo, Pazzi, Richard W., Ueyama, Jó |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877203/ https://www.ncbi.nlm.nih.gov/pubmed/29562657 http://dx.doi.org/10.3390/s18030907 |
Ejemplares similares
-
Memory-Based Pruning of Deep Neural Networks for IoT Devices Applied to Flood Detection
por: Fernandes Junior, Francisco Erivaldo, et al.
Publicado: (2021) -
IoT and ML approach for ornamental fish behaviour analysis
por: Patro, K. Suresh Kumar, et al.
Publicado: (2023) -
Disaster Management in Flash Floods in Leh (Ladakh): A Case Study
por: Gupta, Preeti, et al.
Publicado: (2012) -
An Evolving TinyML Compression Algorithm for IoT Environments Based on Data Eccentricity
por: Signoretti, Gabriel, et al.
Publicado: (2021) -
Emerging Sensor Communication Network-Based AI/ML Driven Intelligent IoT
por: Sharma, Bhisham, et al.
Publicado: (2023)