Cargando…
ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery
The diverse density (DD) algorithm was proposed to handle the problem of low classification accuracy when training samples contain interference such as mixed pixels. The DD algorithm can learn a feature vector from training bags, which comprise instances (pixels). However, the feature vector learned...
Autores principales: | Li, Na, Xu, Zhaopeng, Zhao, Huijie, Huang, Xinchen, Li, Zhenhong, Drummond, Jane, Wang, Daming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877212/ https://www.ncbi.nlm.nih.gov/pubmed/29510547 http://dx.doi.org/10.3390/s18030780 |
Ejemplares similares
-
A Combined Quantitative Evaluation Model for the Capability of Hyperspectral Imagery for Mineral Mapping
por: Li, Na, et al.
Publicado: (2019) -
A “Skylight” Simulator for HWIL Simulation of Hyperspectral Remote Sensing
por: Zhao, Huijie, et al.
Publicado: (2017) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
Spectral Unmixing of Hyperspectral Remote Sensing Imagery via Preserving the Intrinsic Structure Invariant
por: Shao, Yang, et al.
Publicado: (2018) -
A New SCAE-MT Classification Model for Hyperspectral Remote Sensing Images
por: Chen, Huayue, et al.
Publicado: (2022)