Cargando…
An Unsupervised Deep Hyperspectral Anomaly Detector
Hyperspectral image (HSI) based detection has attracted considerable attention recently in agriculture, environmental protection and military applications as different wavelengths of light can be advantageously used to discriminate different types of objects. Unfortunately, estimating the background...
Autores principales: | Ma, Ning, Peng, Yu, Wang, Shaojun, Leong, Philip H. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877305/ https://www.ncbi.nlm.nih.gov/pubmed/29495410 http://dx.doi.org/10.3390/s18030693 |
Ejemplares similares
-
Deep Unsupervised Fusion Learning for Hyperspectral Image Super Resolution
por: Liu, Zhe, et al.
Publicado: (2021) -
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021) -
Unsupervised Hyperspectral Microscopic Image Segmentation Using Deep Embedded Clustering Algorithm
por: Ajay, P., et al.
Publicado: (2022) -
Correlation-Aware Deep Generative Model for Unsupervised Anomaly Detection
por: Fan, Haoyi, et al.
Publicado: (2020) -
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Li, Shicheng, et al.
Publicado: (2021)