Cargando…

Disruption of Central Antioxidant Property of Nuclear Factor Erythroid 2-Related Factor 2 Worsens Circulatory Homeostasis with Baroreflex Dysfunction in Heart Failure

Heart failure is defined as a disruption of circulatory homeostasis. We have demonstrated that baroreflex dysfunction strikingly disrupts circulatory homeostasis. Moreover, previous many reports have suggested that central excess oxidative stress causes sympathoexcitation in heart failure. However,...

Descripción completa

Detalles Bibliográficos
Autor principal: Kishi, Takuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877507/
https://www.ncbi.nlm.nih.gov/pubmed/29495326
http://dx.doi.org/10.3390/ijms19030646
_version_ 1783310707056443392
author Kishi, Takuya
author_facet Kishi, Takuya
author_sort Kishi, Takuya
collection PubMed
description Heart failure is defined as a disruption of circulatory homeostasis. We have demonstrated that baroreflex dysfunction strikingly disrupts circulatory homeostasis. Moreover, previous many reports have suggested that central excess oxidative stress causes sympathoexcitation in heart failure. However, the central mechanisms of baroreflex dysfunction with oxidative stress has not been fully clarified. Our hypothesis was that the impairment of central antioxidant property would worsen circulatory homeostasis with baroreflex dysfunction in heart failure. As the major antioxidant property in the brain, we focused on nuclear factor erythroid 2-related factor 2 (Nrf2; cytoprotective transcription factor). Hemodynamic and baroreflex function in conscious state were assessed by the radio-telemetry system. In the heart failure treated with intracerebroventricular (ICV) infusion of angiotensin II type 1 receptor blocker (ARB), sympathetic activation and brain oxidative stress were significantly lower, and baroreflex sensitivity and volume tolerance were significantly higher than in heart failure treated with vehicle. ICV infusion of Nrf2 activator decreased sympathetic activation and brain oxidative stress, and increased baroreflex sensitivity and volume tolerance to a greater extent than ARB. In conclusion, the disruption of central antioxidant property of Nrf2 worsened circulatory homeostasis with baroreflex dysfunction in heart failure.
format Online
Article
Text
id pubmed-5877507
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-58775072018-04-09 Disruption of Central Antioxidant Property of Nuclear Factor Erythroid 2-Related Factor 2 Worsens Circulatory Homeostasis with Baroreflex Dysfunction in Heart Failure Kishi, Takuya Int J Mol Sci Article Heart failure is defined as a disruption of circulatory homeostasis. We have demonstrated that baroreflex dysfunction strikingly disrupts circulatory homeostasis. Moreover, previous many reports have suggested that central excess oxidative stress causes sympathoexcitation in heart failure. However, the central mechanisms of baroreflex dysfunction with oxidative stress has not been fully clarified. Our hypothesis was that the impairment of central antioxidant property would worsen circulatory homeostasis with baroreflex dysfunction in heart failure. As the major antioxidant property in the brain, we focused on nuclear factor erythroid 2-related factor 2 (Nrf2; cytoprotective transcription factor). Hemodynamic and baroreflex function in conscious state were assessed by the radio-telemetry system. In the heart failure treated with intracerebroventricular (ICV) infusion of angiotensin II type 1 receptor blocker (ARB), sympathetic activation and brain oxidative stress were significantly lower, and baroreflex sensitivity and volume tolerance were significantly higher than in heart failure treated with vehicle. ICV infusion of Nrf2 activator decreased sympathetic activation and brain oxidative stress, and increased baroreflex sensitivity and volume tolerance to a greater extent than ARB. In conclusion, the disruption of central antioxidant property of Nrf2 worsened circulatory homeostasis with baroreflex dysfunction in heart failure. MDPI 2018-02-25 /pmc/articles/PMC5877507/ /pubmed/29495326 http://dx.doi.org/10.3390/ijms19030646 Text en © 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kishi, Takuya
Disruption of Central Antioxidant Property of Nuclear Factor Erythroid 2-Related Factor 2 Worsens Circulatory Homeostasis with Baroreflex Dysfunction in Heart Failure
title Disruption of Central Antioxidant Property of Nuclear Factor Erythroid 2-Related Factor 2 Worsens Circulatory Homeostasis with Baroreflex Dysfunction in Heart Failure
title_full Disruption of Central Antioxidant Property of Nuclear Factor Erythroid 2-Related Factor 2 Worsens Circulatory Homeostasis with Baroreflex Dysfunction in Heart Failure
title_fullStr Disruption of Central Antioxidant Property of Nuclear Factor Erythroid 2-Related Factor 2 Worsens Circulatory Homeostasis with Baroreflex Dysfunction in Heart Failure
title_full_unstemmed Disruption of Central Antioxidant Property of Nuclear Factor Erythroid 2-Related Factor 2 Worsens Circulatory Homeostasis with Baroreflex Dysfunction in Heart Failure
title_short Disruption of Central Antioxidant Property of Nuclear Factor Erythroid 2-Related Factor 2 Worsens Circulatory Homeostasis with Baroreflex Dysfunction in Heart Failure
title_sort disruption of central antioxidant property of nuclear factor erythroid 2-related factor 2 worsens circulatory homeostasis with baroreflex dysfunction in heart failure
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877507/
https://www.ncbi.nlm.nih.gov/pubmed/29495326
http://dx.doi.org/10.3390/ijms19030646
work_keys_str_mv AT kishitakuya disruptionofcentralantioxidantpropertyofnuclearfactorerythroid2relatedfactor2worsenscirculatoryhomeostasiswithbaroreflexdysfunctioninheartfailure