Cargando…
Deep Learning in Radiology: Does One Size Fit All?
Deep learning (DL) is a popular method that is used to perform many important tasks in radiology and medical imaging. Some forms of DL are able to accurately segment organs (essentially, trace the boundaries, enabling volume measurements or calculation of other properties). Other DL networks are abl...
Autores principales: | Erickson, Bradley J., Korfiatis, Panagiotis, Kline, Timothy L., Akkus, Zeynettin, Philbrick, Kenneth, Weston, Alexander D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877825/ https://www.ncbi.nlm.nih.gov/pubmed/29396120 http://dx.doi.org/10.1016/j.jacr.2017.12.027 |
Ejemplares similares
-
Toolkits and Libraries for Deep Learning
por: Erickson, Bradley J., et al.
Publicado: (2017) -
RIL-Contour: a Medical Imaging Dataset Annotation Tool for and with Deep Learning
por: Philbrick, Kenneth A., et al.
Publicado: (2019) -
Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging
por: Akkus, Zeynettin, et al.
Publicado: (2015) -
Thyroid Nodule Size as a Predictor of Malignancy in Follicular and Hurthle Neoplasms
por: Boonrod, Arunnit, et al.
Publicado: (2021) -
Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning
por: Korfiatis, Panagiotis, et al.
Publicado: (2016)