Cargando…
Changes in the lipopolysaccharide of Proteus mirabilis 9B-m (O11a) clinical strain in response to planktonic or biofilm type of growth
The impact of planktonic and biofilm lifestyles of the clinical isolate Proteus mirabilis 9B-m on its lipopolysaccharide (O-polysaccharide, core region, and lipid A) was evaluated. Proteus mirabilis bacteria are able to form biofilm and lipopolysaccharide is one of the factors involved in the biofil...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5878192/ https://www.ncbi.nlm.nih.gov/pubmed/29330591 http://dx.doi.org/10.1007/s00430-018-0534-5 |
_version_ | 1783310816412434432 |
---|---|
author | Zabłotni, Agnieszka Matusiak, Dominik Arbatsky, Nikolay P. Moryl, Magdalena Maciejewska, Anna Kondakova, Anna N. Shashkov, Alexander S. Ługowski, Czesław Knirel, Yuriy A. Różalski, Antoni |
author_facet | Zabłotni, Agnieszka Matusiak, Dominik Arbatsky, Nikolay P. Moryl, Magdalena Maciejewska, Anna Kondakova, Anna N. Shashkov, Alexander S. Ługowski, Czesław Knirel, Yuriy A. Różalski, Antoni |
author_sort | Zabłotni, Agnieszka |
collection | PubMed |
description | The impact of planktonic and biofilm lifestyles of the clinical isolate Proteus mirabilis 9B-m on its lipopolysaccharide (O-polysaccharide, core region, and lipid A) was evaluated. Proteus mirabilis bacteria are able to form biofilm and lipopolysaccharide is one of the factors involved in the biofilm formation. Lipopolysaccharide was isolated from planktonic and biofilm cells of the investigated strain and analyzed by SDS–PAGE with silver staining, Western blotting and ELISA, as well as NMR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry techniques. Chemical and NMR spectroscopic analyses revealed that the structure of the O-polysaccharide of P. mirabilis 9B-m strain did not depend on the form of cell growth, but the full-length chains of the O-antigen were reduced when bacteria grew in biofilm. The study also revealed structural modifications of the core region in the lipopolysaccharide of biofilm-associated cells—peaks assigned to compounds absent in cells from the planktonic culture and not previously detected in any of the known Proteus core oligosaccharides. No differences in the lipid A structure were observed. In summary, our study demonstrated for the first time that changes in the lifestyle of P. mirabilis bacteria leads to the modifications of their important virulence factor—lipopolysaccharide. |
format | Online Article Text |
id | pubmed-5878192 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-58781922018-04-03 Changes in the lipopolysaccharide of Proteus mirabilis 9B-m (O11a) clinical strain in response to planktonic or biofilm type of growth Zabłotni, Agnieszka Matusiak, Dominik Arbatsky, Nikolay P. Moryl, Magdalena Maciejewska, Anna Kondakova, Anna N. Shashkov, Alexander S. Ługowski, Czesław Knirel, Yuriy A. Różalski, Antoni Med Microbiol Immunol Original Investigation The impact of planktonic and biofilm lifestyles of the clinical isolate Proteus mirabilis 9B-m on its lipopolysaccharide (O-polysaccharide, core region, and lipid A) was evaluated. Proteus mirabilis bacteria are able to form biofilm and lipopolysaccharide is one of the factors involved in the biofilm formation. Lipopolysaccharide was isolated from planktonic and biofilm cells of the investigated strain and analyzed by SDS–PAGE with silver staining, Western blotting and ELISA, as well as NMR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry techniques. Chemical and NMR spectroscopic analyses revealed that the structure of the O-polysaccharide of P. mirabilis 9B-m strain did not depend on the form of cell growth, but the full-length chains of the O-antigen were reduced when bacteria grew in biofilm. The study also revealed structural modifications of the core region in the lipopolysaccharide of biofilm-associated cells—peaks assigned to compounds absent in cells from the planktonic culture and not previously detected in any of the known Proteus core oligosaccharides. No differences in the lipid A structure were observed. In summary, our study demonstrated for the first time that changes in the lifestyle of P. mirabilis bacteria leads to the modifications of their important virulence factor—lipopolysaccharide. Springer Berlin Heidelberg 2018-01-12 2018 /pmc/articles/PMC5878192/ /pubmed/29330591 http://dx.doi.org/10.1007/s00430-018-0534-5 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Investigation Zabłotni, Agnieszka Matusiak, Dominik Arbatsky, Nikolay P. Moryl, Magdalena Maciejewska, Anna Kondakova, Anna N. Shashkov, Alexander S. Ługowski, Czesław Knirel, Yuriy A. Różalski, Antoni Changes in the lipopolysaccharide of Proteus mirabilis 9B-m (O11a) clinical strain in response to planktonic or biofilm type of growth |
title | Changes in the lipopolysaccharide of Proteus mirabilis 9B-m (O11a) clinical strain in response to planktonic or biofilm type of growth |
title_full | Changes in the lipopolysaccharide of Proteus mirabilis 9B-m (O11a) clinical strain in response to planktonic or biofilm type of growth |
title_fullStr | Changes in the lipopolysaccharide of Proteus mirabilis 9B-m (O11a) clinical strain in response to planktonic or biofilm type of growth |
title_full_unstemmed | Changes in the lipopolysaccharide of Proteus mirabilis 9B-m (O11a) clinical strain in response to planktonic or biofilm type of growth |
title_short | Changes in the lipopolysaccharide of Proteus mirabilis 9B-m (O11a) clinical strain in response to planktonic or biofilm type of growth |
title_sort | changes in the lipopolysaccharide of proteus mirabilis 9b-m (o11a) clinical strain in response to planktonic or biofilm type of growth |
topic | Original Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5878192/ https://www.ncbi.nlm.nih.gov/pubmed/29330591 http://dx.doi.org/10.1007/s00430-018-0534-5 |
work_keys_str_mv | AT zabłotniagnieszka changesinthelipopolysaccharideofproteusmirabilis9bmo11aclinicalstraininresponsetoplanktonicorbiofilmtypeofgrowth AT matusiakdominik changesinthelipopolysaccharideofproteusmirabilis9bmo11aclinicalstraininresponsetoplanktonicorbiofilmtypeofgrowth AT arbatskynikolayp changesinthelipopolysaccharideofproteusmirabilis9bmo11aclinicalstraininresponsetoplanktonicorbiofilmtypeofgrowth AT morylmagdalena changesinthelipopolysaccharideofproteusmirabilis9bmo11aclinicalstraininresponsetoplanktonicorbiofilmtypeofgrowth AT maciejewskaanna changesinthelipopolysaccharideofproteusmirabilis9bmo11aclinicalstraininresponsetoplanktonicorbiofilmtypeofgrowth AT kondakovaannan changesinthelipopolysaccharideofproteusmirabilis9bmo11aclinicalstraininresponsetoplanktonicorbiofilmtypeofgrowth AT shashkovalexanders changesinthelipopolysaccharideofproteusmirabilis9bmo11aclinicalstraininresponsetoplanktonicorbiofilmtypeofgrowth AT ługowskiczesław changesinthelipopolysaccharideofproteusmirabilis9bmo11aclinicalstraininresponsetoplanktonicorbiofilmtypeofgrowth AT knirelyuriya changesinthelipopolysaccharideofproteusmirabilis9bmo11aclinicalstraininresponsetoplanktonicorbiofilmtypeofgrowth AT rozalskiantoni changesinthelipopolysaccharideofproteusmirabilis9bmo11aclinicalstraininresponsetoplanktonicorbiofilmtypeofgrowth |