Cargando…
Performance improvement via bagging in probabilistic prediction of chaotic time series using similarity of attractors and LOOCV predictable horizon
Recently, we have presented a method of probabilistic prediction of chaotic time series. The method employs learning machines involving strong learners capable of making predictions with desirably long predictable horizons, where, however, usual ensemble mean for making representative prediction is...
Autores principales: | Kurogi, Shuichi, Toidani, Mitsuki, Shigematsu, Ryosuke, Matsuo, Kazuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5878209/ https://www.ncbi.nlm.nih.gov/pubmed/29622859 http://dx.doi.org/10.1007/s00521-017-3149-7 |
Ejemplares similares
-
Impulsive control for synchronizing delayed discrete complex networks with switching topology
por: Li, Chaojie, et al.
Publicado: (2013) -
The theory of chaotic attractors
por: Hunt, Brian, et al.
Publicado: (2004) -
Chaotic attractor hopping yields logic operations
por: Murali, K., et al.
Publicado: (2018) -
Complex Chaotic Attractor via Fractal Transformation
por: Dai, Shengqiu, et al.
Publicado: (2019) -
A Hidden Chaotic System with Multiple Attractors
por: Zhang, Xiefu, et al.
Publicado: (2021)